亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Offline reinforcement learning is important in domains such as medicine, economics, and e-commerce where online experimentation is costly, dangerous or unethical, and where the true model is unknown. However, most methods assume all covariates used in the behavior policy's action decisions are observed. This untestable assumption may be incorrect. We study robust policy evaluation and policy optimization in the presence of unobserved confounders. We assume the extent of possible unobserved confounding can be bounded by a sensitivity model, and that the unobserved confounders are sequentially exogenous. We propose and analyze an (orthogonalized) robust fitted-Q-iteration that uses closed-form solutions of the robust Bellman operator to derive a loss minimization problem for the robust Q function. Our algorithm enjoys the computational ease of fitted-Q-iteration and statistical improvements (reduced dependence on quantile estimation error) from orthogonalization. We provide sample complexity bounds, insights, and show effectiveness in simulations.

相關內容

During an infectious disease outbreak, public health decision-makers require real-time monitoring of disease transmission to respond quickly and intelligently. In these settings, a key measure of transmission is the instantaneous time-varying reproduction number, $R_t$. Estimation of this number using a Time-Since-Infection model relies on case-notification data and the distribution of the serial interval on the target population. However, in practice, case-notification data may contain measurement error due to variation in case reporting while available serial interval estimates may come from studies on non-representative populations. We propose a new data-driven method that accounts for particular forms of case-reporting measurement error and can incorporate multiple partially representative serial interval estimates into the transmission estimation process. In addition, we provide practical tools for automatically identifying measurement error patterns and determining when measurement error may not be adequately accounted for. We illustrate the potential bias undertaken by methods that ignore these practical concerns through a variety of simulated outbreaks. We then demonstrate the use of our method on data from the COVID-19 pandemic to estimate transmission and explore the relationships between social distancing, temperature, and transmission.

We consider a multi-process remote estimation system observing $K$ independent Ornstein-Uhlenbeck processes. In this system, a shared sensor samples the $K$ processes in such a way that the long-term average sum mean square error (MSE) is minimized. The sensor operates under a total sampling frequency constraint $f_{\max}$. The samples from all processes consume random processing delays in a shared queue and then are transmitted over an erasure channel with probability $\epsilon$. We study two variants of the problem: first, when the samples are scheduled according to a Maximum-Age-First (MAF) policy, and the receiver provides an erasure status feedback; and second, when samples are scheduled according to a Round-Robin (RR) policy, when there is no erasure status feedback from the receiver. Aided by optimal structural results, we show that the optimal sampling policy for both settings, under some conditions, is a \emph{threshold policy}. We characterize the optimal threshold and the corresponding optimal long-term average sum MSE as a function of $K$, $f_{\max}$, $\epsilon$, and the statistical properties of the observed processes. Our results show that, with an exponentially distributed service rate, the optimal threshold $\tau^*$ increases as the number of processes $K$ increases, for both settings. Additionally, we show that the optimal threshold is an \emph{increasing} function of $\epsilon$ in the case of \emph{available} erasure status feedback, while it exhibits the \emph{opposite behavior}, i.e., $\tau^*$ is a \emph{decreasing} function of $\epsilon$, in the case of \emph{absent} erasure status feedback.

This paper focuses on parameter estimation and introduces a new method for lower bounding the Bayesian risk. The method allows for the use of virtually \emph{any} information measure, including R\'enyi's $\alpha$, $\varphi$-Divergences, and Sibson's $\alpha$-Mutual Information. The approach considers divergences as functionals of measures and exploits the duality between spaces of measures and spaces of functions. In particular, we show that one can lower bound the risk with any information measure by upper bounding its dual via Markov's inequality. We are thus able to provide estimator-independent impossibility results thanks to the Data-Processing Inequalities that divergences satisfy. The results are then applied to settings of interest involving both discrete and continuous parameters, including the ``Hide-and-Seek'' problem, and compared to the state-of-the-art techniques. An important observation is that the behaviour of the lower bound in the number of samples is influenced by the choice of the information measure. We leverage this by introducing a new divergence inspired by the ``Hockey-Stick'' Divergence, which is demonstrated empirically to provide the largest lower-bound across all considered settings. If the observations are subject to privatisation, stronger impossibility results can be obtained via Strong Data-Processing Inequalities. The paper also discusses some generalisations and alternative directions.

In applications of offline reinforcement learning to observational data, such as in healthcare or education, a general concern is that observed actions might be affected by unobserved factors, inducing confounding and biasing estimates derived under the assumption of a perfect Markov decision process (MDP) model. Here we tackle this by considering off-policy evaluation in a partially observed MDP (POMDP). Specifically, we consider estimating the value of a given target policy in a POMDP given trajectories with only partial state observations generated by a different and unknown policy that may depend on the unobserved state. We tackle two questions: what conditions allow us to identify the target policy value from the observed data and, given identification, how to best estimate it. To answer these, we extend the framework of proximal causal inference to our POMDP setting, providing a variety of settings where identification is made possible by the existence of so-called bridge functions. We then show how to construct semiparametrically efficient estimators in these settings. We term the resulting framework proximal reinforcement learning (PRL). We demonstrate the benefits of PRL in an extensive simulation study and on the problem of sepsis management.

Motivated by applications in personalized medicine and individualized policy making, there is a growing interest in techniques for quantifying treatment effect heterogeneity in terms of the conditional average treatment effect (CATE). Some of the most prominent methods for CATE estimation developed in recent years are T-Learner, DR-Learner and R-Learner. The latter two were designed to improve on the former by being Neyman-orthogonal. However, the relations between them remain unclear, and likewise does the literature remain vague on whether these learners converge to a useful quantity or (functional) estimand when the underlying optimization procedure is restricted to a class of functions that does not include the CATE. In this article, we provide insight into these questions by discussing DR-learner and R-learner as special cases of a general class of Neyman-orthogonal learners for the CATE, for which we moreover derive oracle bounds. Our results shed light on how one may construct Neyman-orthogonal learners with desirable properties, on when DR-learner may be preferred over R-learner (and vice versa), and on novel learners that may sometimes be preferable to either of these. Theoretical findings are confirmed using results from simulation studies on synthetic data, as well as an application in critical care medicine.

Efficient and accurate estimation of multivariate empirical probability distributions is fundamental to the calculation of information-theoretic measures such as mutual information and transfer entropy. Common techniques include variations on histogram estimation which, whilst computationally efficient, are often unable to precisely capture the probability density of samples with high correlation, kurtosis or fine substructure, especially when sample sizes are small. Adaptive partitions, which adjust heuristically to the sample, can reduce the bias imparted from the geometry of the histogram itself, but these have commonly focused on the location, scale and granularity of the partition, the effects of which are limited for highly correlated distributions. In this paper, I reformulate the differential entropy estimator for the special case of an equiprobable histogram, using a k-d tree to partition the sample space into bins of equal probability mass. By doing so, I expose an implicit rotational orientation parameter, which is conjectured to be suboptimally specified in the typical marginal alignment. I propose that the optimal orientation minimises the variance of the bin volumes, and demonstrate that improved entropy estimates can be obtained by rotationally aligning the partition to the sample distribution accordingly. Such optimal partitions are observed to be more accurate than existing techniques in estimating entropies of correlated bivariate Gaussian distributions with known theoretical values, across varying sample sizes (99% CI).

High-dimensional data can often display heterogeneity due to heteroscedastic variance or inhomogeneous covariate effects. Penalized quantile and expectile regression methods offer useful tools to detect heteroscedasticity in high-dimensional data. The former is computationally challenging due to the non-smooth nature of the check loss, and the latter is sensitive to heavy-tailed error distributions. In this paper, we propose and study (penalized) robust expectile regression (retire), with a focus on iteratively reweighted $\ell_1$-penalization which reduces the estimation bias from $\ell_1$-penalization and leads to oracle properties. Theoretically, we establish the statistical properties of the retire estimator under two regimes: (i) low-dimensional regime in which $d \ll n$; (ii) high-dimensional regime in which $s\ll n\ll d$ with $s$ denoting the number of significant predictors. In the high-dimensional setting, we carefully characterize the solution path of the iteratively reweighted $\ell_1$-penalized retire estimation, adapted from the local linear approximation algorithm for folded-concave regularization. Under a mild minimum signal strength condition, we show that after as many as $\log(\log d)$ iterations the final iterate enjoys the oracle convergence rate. At each iteration, the weighted $\ell_1$-penalized convex program can be efficiently solved by a semismooth Newton coordinate descent algorithm. Numerical studies demonstrate the competitive performance of the proposed procedure compared with either non-robust or quantile regression based alternatives.

The classical non-greedy algorithm (NGA) and the recently proposed proximal alternating minimization method with extrapolation (PAMe) for $L_1$-norm PCA are revisited and their finite-step convergence are studied. It is first shown that NGA can be interpreted as a conditional subgradient or an alternating maximization method. By recognizing it as a conditional subgradient, we prove that the iterative points generated by the algorithm will be constant in finitely many steps under a certain full-rank assumption; such an assumption can be removed when the projection dimension is one. By treating the algorithm as an alternating maximization, we then prove that the objective value will be fixed after at most $\left\lceil\frac{F^{\max}}{\tau_0} \right\rceil$ steps, where the stopping point satisfies certain optimality conditions. Then, a slight modification of NGA with improved convergence properties is analyzed. It is shown that the iterative points generated by the modified algorithm will not change after at most $\left\lceil\frac{2F^{\max}}{\tau} \right\rceil$ steps; furthermore, the stopping point satisfies certain optimality conditions if the proximal parameter $\tau$ is small enough. For PAMe, it is proved that the sign variable will remain constant after finitely many steps and the algorithm can output a point satisfying certain optimality condition, if the parameters are small enough and a full rank assumption is satisfied. Moreover, if there is no proximal term on the projection matrix related subproblem, then the iterative points generated by this modified algorithm will not change after at most $\left\lceil \frac{4F^{\max}}{\tau(1-\gamma)} \right\rceil$ steps and the stopping point also satisfies certain optimality conditions, provided similar assumptions as those for PAMe. The full rank assumption can be removed when the projection dimension is one.

Problem definition: Behavioral health interventions, delivered through digital platforms, have the potential to significantly improve health outcomes, through education, motivation, reminders, and outreach. We study the problem of optimizing personalized interventions for patients to maximize some long-term outcome, in a setting where interventions are costly and capacity-constrained. Methodology/results: This paper provides a model-free approach to solving this problem. We find that generic model-free approaches from the reinforcement learning literature are too data intensive for healthcare applications, while simpler bandit approaches make progress at the expense of ignoring long-term patient dynamics. We present a new algorithm we dub DecompPI that approximates one step of policy iteration. Implementing DecompPI simply consists of a prediction task from offline data, alleviating the need for online experimentation. Theoretically, we show that under a natural set of structural assumptions on patient dynamics, DecompPI surprisingly recovers at least 1/2 of the improvement possible between a naive baseline policy and the optimal policy. At the same time, DecompPI is both robust to estimation errors and interpretable. Through an empirical case study on a mobile health platform for improving treatment adherence for tuberculosis, we find that DecompPI can provide the same efficacy as the status quo with approximately half the capacity of interventions. Managerial implications: DecompPI is general and is easily implementable for organizations aiming to improve long-term behavior through targeted interventions. Our case study suggests that the platform's costs of deploying interventions can potentially be cut by 50%, which facilitates the ability to scale up the system in a cost-efficient fashion.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

北京阿比特科技有限公司