亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Larger language models (LLMs) have taken the world by storm with their massive multi-tasking capabilities simply by optimizing over a next-word prediction objective. With the emergence of their properties and encoded knowledge, the risk of LLMs producing harmful outputs increases, making them unfit for scalable deployment for the public. In this work, we propose a new safety evaluation benchmark RED-EVAL that carries out red-teaming. We show that even widely deployed models are susceptible to the Chain of Utterances-based (CoU) prompting, jailbreaking closed source LLM-based systems such as GPT-4 and ChatGPT to unethically respond to more than 65% and 73% of harmful queries. We also demonstrate the consistency of the RED-EVAL across 8 open-source LLMs in generating harmful responses in more than 86% of the red-teaming attempts. Next, we propose RED-INSTRUCT--An approach for the safety alignment of LLMs. It constitutes two phases: 1) HARMFULQA data collection: Leveraging CoU prompting, we collect a dataset that consists of 1.9K harmful questions covering a wide range of topics, 9.5K safe and 7.3K harmful conversations from ChatGPT; 2) SAFE-ALIGN: We demonstrate how the conversational dataset can be used for the safety alignment of LLMs by minimizing the negative log-likelihood over helpful responses and penalizing over harmful responses by gradient accent over sample loss. Our model STARLING, a fine-tuned Vicuna-7B, is observed to be more safely aligned when evaluated on RED-EVAL and HHH benchmarks while preserving the utility of the baseline models (TruthfulQA, MMLU, and BBH).

相關內容

Large language models (LLMs) and their variants have shown extraordinary efficacy across numerous downstream natural language processing (NLP) tasks, which has presented a new vision for the development of NLP. Despite their remarkable performance in natural language generating (NLG), LLMs lack a distinct focus on the emotion understanding domain. As a result, using LLMs for emotion recognition may lead to suboptimal and inadequate precision. Another limitation of LLMs is that they are typical trained without leveraging multi-modal information. To overcome these limitations, we propose DialogueLLM, a context and emotion knowledge tuned LLM that is obtained by fine-tuning LLaMA models with 13,638 multi-modal (i.e., texts and videos) emotional dialogues. The visual information is considered as the supplementary knowledge to construct high-quality instructions. We offer a comprehensive evaluation of our proposed model on three benchmarking emotion recognition in conversations (ERC) datasets and compare the results against the SOTA baselines and other SOTA LLMs. Additionally, DialogueLLM-7B can be easily trained using LoRA on a 40GB A100 GPU in 5 hours, facilitating reproducibility for other researchers.

Large language models (LLMs) such as ChatGPT have demonstrated superior performance on a variety of natural language processing (NLP) tasks including sentiment analysis, mathematical reasoning and summarization. Furthermore, since these models are instruction-tuned on human conversations to produce "helpful" responses, they can and often will produce explanations along with the response, which we call self-explanations. For example, when analyzing the sentiment of a movie review, the model may output not only the positivity of the sentiment, but also an explanation (e.g., by listing the sentiment-laden words such as "fantastic" and "memorable" in the review). How good are these automatically generated self-explanations? In this paper, we investigate this question on the task of sentiment analysis and for feature attribution explanation, one of the most commonly studied settings in the interpretability literature (for pre-ChatGPT models). Specifically, we study different ways to elicit the self-explanations, evaluate their faithfulness on a set of evaluation metrics, and compare them to traditional explanation methods such as occlusion or LIME saliency maps. Through an extensive set of experiments, we find that ChatGPT's self-explanations perform on par with traditional ones, but are quite different from them according to various agreement metrics, meanwhile being much cheaper to produce (as they are generated along with the prediction). In addition, we identified several interesting characteristics of them, which prompt us to rethink many current model interpretability practices in the era of ChatGPT(-like) LLMs.

The ever-increasing large language models (LLMs), though opening a potential path for the upcoming artificial general intelligence, sadly drops a daunting obstacle on the way towards their on-device deployment. As one of the most well-established pre-LLMs approaches in reducing model complexity, network pruning appears to lag behind in the era of LLMs, due mostly to its costly fine-tuning (or re-training) necessity under the massive volumes of model parameter and training data. To close this industry-academia gap, we introduce Dynamic Sparse No Training (DSnoT), a training-free fine-tuning approach that slightly updates sparse LLMs without the expensive backpropagation and any weight updates. Inspired by the Dynamic Sparse Training, DSnoT minimizes the reconstruction error between the dense and sparse LLMs, in the fashion of performing iterative weight pruning-and-growing on top of sparse LLMs. To accomplish this purpose, DSnoT particularly takes into account the anticipated reduction in reconstruction error for pruning and growing, as well as the variance w.r.t. different input data for growing each weight. This practice can be executed efficiently in linear time since its obviates the need of backpropagation for fine-tuning LLMs. Extensive experiments on LLaMA-V1/V2, Vicuna, and OPT across various benchmarks demonstrate the effectiveness of DSnoT in enhancing the performance of sparse LLMs, especially at high sparsity levels. For instance, DSnoT is able to outperform the state-of-the-art Wanda by 26.79 perplexity at 70% sparsity with LLaMA-7B. Our paper offers fresh insights into how to fine-tune sparse LLMs in an efficient training-free manner and open new venues to scale the great potential of sparsity to LLMs. Codes are available at //github.com/zyxxmu/DSnoT.

Large language models (LLMs), such as GPT-3.5 and GPT-4, have greatly advanced the performance of artificial systems on various natural language processing tasks to human-like levels. However, their generalisation and robustness to perform logical reasoning remain under-evaluated. To probe this ability, we propose three new logical reasoning datasets named "ReClor-plus", "LogiQA-plus" and "LogiQAv2-plus", each featuring three subsets: the first with randomly shuffled options, the second with the correct choices replaced by "none of the other options are correct", and a combination of the previous two subsets. We carry out experiments on these datasets with both discriminative and generative LLMs and show that these simple tricks greatly hinder the performance of the language models. Despite their superior performance on the original publicly available datasets, we find that all models struggle to answer our newly constructed datasets. We show that introducing task variations by perturbing a sizable training set can markedly improve the model's generalisation and robustness in logical reasoning tasks. Moreover, applying logic-driven data augmentation for fine-tuning, combined with prompting can enhance the generalisation performance of both discriminative large language models and generative large language models. These results offer insights into assessing and improving the generalisation and robustness of large language models for logical reasoning tasks. We make our source code and data publicly available \url{//github.com/Strong-AI-Lab/Logical-and-abstract-reasoning}.

Retrieval-augmented large language models (R-LLMs) combine pre-trained large language models (LLMs) with information retrieval systems to improve the accuracy of factual question-answering. However, current libraries for building R-LLMs provide high-level abstractions without sufficient transparency for evaluating and optimizing prompts within specific inference processes such as retrieval and generation. To address this gap, we present RaLLe, an open-source framework designed to facilitate the development, evaluation, and optimization of R-LLMs for knowledge-intensive tasks. With RaLLe, developers can easily develop and evaluate R-LLMs, improving hand-crafted prompts, assessing individual inference processes, and objectively measuring overall system performance quantitatively. By leveraging these features, developers can enhance the performance and accuracy of their R-LLMs in knowledge-intensive generation tasks. We open-source our code at //github.com/yhoshi3/RaLLe.

Recently, Large language models (LLMs) with powerful general capabilities have been increasingly integrated into various Web applications, while undergoing alignment training to ensure that the generated content aligns with user intent and ethics. Unfortunately, they remain the risk of generating harmful content like hate speech and criminal activities in practical applications. Current approaches primarily rely on detecting, collecting, and training against harmful prompts to prevent such risks. However, they typically focused on the "superficial" harmful prompts with a solitary intent, ignoring composite attack instructions with multiple intentions that can easily elicit harmful content in real-world scenarios. In this paper, we introduce an innovative technique for obfuscating harmful instructions: Compositional Instruction Attacks (CIA), which refers to attacking by combination and encapsulation of multiple instructions. CIA hides harmful prompts within instructions of harmless intentions, making it impossible for the model to identify underlying malicious intentions. Furthermore, we implement two transformation methods, known as T-CIA and W-CIA, to automatically disguise harmful instructions as talking or writing tasks, making them appear harmless to LLMs. We evaluated CIA on GPT-4, ChatGPT, and ChatGLM2 with two safety assessment datasets and two harmful prompt datasets. It achieves an attack success rate of 95%+ on safety assessment datasets, and 83%+ for GPT-4, 91%+ for ChatGPT (gpt-3.5-turbo backed) and ChatGLM2-6B on harmful prompt datasets. Our approach reveals the vulnerability of LLMs to such compositional instruction attacks that harbor underlying harmful intentions, contributing significantly to LLM security development. Warning: this paper may contain offensive or upsetting content!

Large language models (LLMs) have been used for diverse tasks in natural language processing (NLP), yet remain under-explored for task-oriented dialogue systems (TODS), especially for end-to-end TODS. We present InstructTODS, a novel off-the-shelf framework for zero-shot end-to-end task-oriented dialogue systems that can adapt to diverse domains without fine-tuning. By leveraging LLMs, InstructTODS generates a proxy belief state that seamlessly translates user intentions into dynamic queries for efficient interaction with any KB. Our extensive experiments demonstrate that InstructTODS achieves comparable performance to fully fine-tuned TODS in guiding dialogues to successful completion without prior knowledge or task-specific data. Furthermore, a rigorous human evaluation of end-to-end TODS shows that InstructTODS produces dialogue responses that notably outperform both the gold responses and the state-of-the-art TODS in terms of helpfulness, informativeness, and humanness. Moreover, the effectiveness of LLMs in TODS is further supported by our comprehensive evaluations on TODS subtasks: dialogue state tracking, intent classification, and response generation. Code and implementations could be found here //github.com/WillyHC22/InstructTODS/

Large language models (LLMs) have shown increasing capacity at planning and executing a high-level goal in a live computer environment (e.g. MiniWoB++). To perform a task, recent works often require a model to learn from trace examples of the task via either supervised learning or few/many-shot prompting. Without these trace examples, it remains a challenge how an agent can autonomously learn and improve its control on a computer, which limits the ability of an agent to perform a new task. We approach this problem with a zero-shot agent that requires no given expert traces. Our agent plans for executable actions on a partially observed environment, and iteratively progresses a task by identifying and learning from its mistakes via self-reflection and structured thought management. On the easy tasks of MiniWoB++, we show that our zero-shot agent often outperforms recent SoTAs, with more efficient reasoning. For tasks with more complexity, our reflective agent performs on par with prior best models, even though previous works had the advantages of accessing expert traces or additional screen information.

Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

北京阿比特科技有限公司