6G will fulfill the requirements of future digital healthcare systems through emerging decentralized computing and secure communications technologies. Digital healthcare solutions employ numerous low-power and resource-constrained connected things, such as the Internet of Medical Things (IoMT). However, the current digital healthcare solutions will face two major challenges. First, the proposed solutions are based on the traditional IoT-Cloud model that will experience latency and reliability challenges to meet the expectations and requirements of digital healthcare, while potentially inflicting heavy network load. Second, the existing digital healthcare solutions will face security challenges due to the inherent limitations of IoMT caused by the lack of resources for proper security in those devices. Therefore, in this research, we present a decentralized adaptive security architecture for the successful deployment of digital healthcare. The proposed architecture leverages the edge-cloud continuum to meet the performance, efficiency, and reliability requirements. It can adapt the security solution at run-time to meet the limited capacity of IoMT devices without compromising the security of critical data. Finally, the research outlines comprehensive methodologies for validating the proposed security architecture.
As an emerging computing paradigm, edge computing offers computing resources closer to the data sources, helping to improve the service quality of many real-time applications. A crucial problem is designing a rational pricing mechanism to maximize the revenue of the edge computing service provider (ECSP). However, prior works have considerable limitations: clients are static and are required to disclose their preferences, which is impractical in reality. However, previous works assume user privacy information to be known or consider the number of users in edge scenarios to be static. To address this issue, we propose a novel sequential computation offloading mechanism, where the ECSP posts prices of computing resources with different configurations to clients in turn. Clients independently choose which computing resources to purchase and how to offload based on their prices. Then Egret, a deep reinforcement learning-based approach that achieves maximum revenue, is proposed. Egret determines the optimal price and visiting orders online without considering clients' preferences. Experimental results show that the revenue of ECSP in Egret is only 1.29\% lower than Oracle and 23.43\% better than the state-of-the-art when the client arrives dynamically.
Recurrent neural networks and Transformers have recently dominated most applications in hyperspectral (HS) imaging, owing to their capability to capture long-range dependencies from spectrum sequences. However, despite the success of these sequential architectures, the non-ignorable inefficiency caused by either difficulty in parallelization or computationally prohibitive attention still hinders their practicality, especially for large-scale observation in remote sensing scenarios. To address this issue, we herein propose SpectralMamba -- a novel state space model incorporated efficient deep learning framework for HS image classification. SpectralMamba features the simplified but adequate modeling of HS data dynamics at two levels. First, in spatial-spectral space, a dynamical mask is learned by efficient convolutions to simultaneously encode spatial regularity and spectral peculiarity, thus attenuating the spectral variability and confusion in discriminative representation learning. Second, the merged spectrum can then be efficiently operated in the hidden state space with all parameters learned input-dependent, yielding selectively focused responses without reliance on redundant attention or imparallelizable recurrence. To explore the room for further computational downsizing, a piece-wise scanning mechanism is employed in-between, transferring approximately continuous spectrum into sequences with squeezed length while maintaining short- and long-term contextual profiles among hundreds of bands. Through extensive experiments on four benchmark HS datasets acquired by satellite-, aircraft-, and UAV-borne imagers, SpectralMamba surprisingly creates promising win-wins from both performance and efficiency perspectives.
Despite the recent success of deep neural networks, there remains a need for effective methods to enhance domain generalization using vision transformers. In this paper, we propose a novel domain generalization technique called Robust Representation Learning with Self-Distillation (RRLD) comprising i) intermediate-block self-distillation and ii) augmentation-guided self-distillation to improve the generalization capabilities of transformer-based models on unseen domains. This approach enables the network to learn robust and general features that are invariant to different augmentations and domain shifts while effectively mitigating overfitting to source domains. To evaluate the effectiveness of our proposed method, we perform extensive experiments on PACS and OfficeHome benchmark datasets, as well as an industrial wafer semiconductor defect dataset. The results demonstrate that RRLD achieves robust and accurate generalization performance. We observe an average accuracy improvement in the range of 1.2% to 2.3% over the state-of-the-art on the three datasets.
Deep subspace clustering methods are now prominent in clustering, typically using fully connected networks and a self-representation loss function. However, these methods often struggle with overfitting and lack interpretability. In this paper, we explore an alternative clustering approach based on deep unfolding. By unfolding iterative optimization methods into neural networks, this approach offers enhanced interpretability and reliability compared to data-driven deep learning methods, and greater adaptability and generalization than model-based approaches. Hence, unfolding has become widely used in inverse imaging problems, such as image restoration, reconstruction, and super-resolution, but has not been sufficiently explored yet in the context of clustering. In this work, we introduce an innovative clustering architecture for hyperspectral images (HSI) by unfolding an iterative solver based on the Alternating Direction Method of Multipliers (ADMM) for sparse subspace clustering. To our knowledge, this is the first attempt to apply unfolding ADMM for computing the self-representation matrix in subspace clustering. Moreover, our approach captures well the structural characteristics of HSI data by employing the K nearest neighbors algorithm as part of a structure preservation module. Experimental evaluation of three established HSI datasets shows clearly the potential of the unfolding approach in HSI clustering and even demonstrates superior performance compared to state-of-the-art techniques.
The advancement of wireless communication systems toward 5G and beyond is spurred by the demand for high data rates, exceedingly dependable low-latency communication, and extensive connectivity that aligns with sensing requisites such as advanced high-resolution sensing and target detection. Consequently, embedding sensing into communication has gained considerable attention. In this work, we propose an alternative approach for optimizing integrated sensing and communication (ISAC) waveform for target detection by concurrently maximizing the power of the communication signal at an intended user and minimizing the multi-user and sensing interference. We formulate the problem as a non-disciplined convex programming (NDCP) optimization and we use a distribution-based approach for interference cancellation. Precisely, we establish the distribution of the communication signal and the multi-user communication interference received by the intended user, and thereafter, we establish that the sensing interference can be distributed as a centralized Chi-squared if the sensing covariance matrix is idempotent. We design such a matrix based on the symmetrical idempotent property. Additionally, we propose a disciplined convex programming (DCP) form of the problem, and using successive convex approximation (SCA), we show that the solutions can reach a stable waveform for efficient target detection. Furthermore, we compare the proposed waveform with state of the art radar-communication waveform designs and demonstrate its superior performance by computer simulations.
Efficient exploration remains a challenging problem in reinforcement learning, especially for tasks where extrinsic rewards from environments are sparse or even totally disregarded. Significant advances based on intrinsic motivation show promising results in simple environments but often get stuck in environments with multimodal and stochastic dynamics. In this work, we propose a variational dynamic model based on the conditional variational inference to model the multimodality and stochasticity. We consider the environmental state-action transition as a conditional generative process by generating the next-state prediction under the condition of the current state, action, and latent variable, which provides a better understanding of the dynamics and leads a better performance in exploration. We derive an upper bound of the negative log-likelihood of the environmental transition and use such an upper bound as the intrinsic reward for exploration, which allows the agent to learn skills by self-supervised exploration without observing extrinsic rewards. We evaluate the proposed method on several image-based simulation tasks and a real robotic manipulating task. Our method outperforms several state-of-the-art environment model-based exploration approaches.
With the universal adoption of machine learning in healthcare, the potential for the automation of societal biases to further exacerbate health disparities poses a significant risk. We explore algorithmic fairness from the perspective of feature selection. Traditional feature selection methods identify features for better decision making by removing resource-intensive, correlated, or non-relevant features but overlook how these factors may differ across subgroups. To counter these issues, we evaluate a fair feature selection method that considers equal importance to all demographic groups. We jointly considered a fairness metric and an error metric within the feature selection process to ensure a balance between minimizing both bias and global classification error. We tested our approach on three publicly available healthcare datasets. On all three datasets, we observed improvements in fairness metrics coupled with a minimal degradation of balanced accuracy. Our approach addresses both distributive and procedural fairness within the fair machine learning context.
Due to the rapid development of science and technology, the importance of imprecise, noisy, and uncertain data is increasing at an exponential rate. Thus, mining patterns in uncertain databases have drawn the attention of researchers. Moreover, frequent sequences of items from these databases need to be discovered for meaningful knowledge with great impact. In many real cases, weights of items and patterns are introduced to find interesting sequences as a measure of importance. Hence, a constraint of weight needs to be handled while mining sequential patterns. Besides, due to the dynamic nature of databases, mining important information has become more challenging. Instead of mining patterns from scratch after each increment, incremental mining algorithms utilize previously mined information to update the result immediately. Several algorithms exist to mine frequent patterns and weighted sequences from incremental databases. However, these algorithms are confined to mine the precise ones. Therefore, we have developed an algorithm to mine frequent sequences in an uncertain database in this work. Furthermore, we have proposed two new techniques for mining when the database is incremental. Extensive experiments have been conducted for performance evaluation. The analysis showed the efficiency of our proposed framework.
Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).