亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we study practical heuristics to improve the performance of prefix-tree based algorithms for differentially private heavy hitter detection. Our model assumes each user has multiple data points and the goal is to learn as many of the most frequent data points as possible across all users' data with aggregate and local differential privacy. We propose an adaptive hyperparameter tuning algorithm that improves the performance of the algorithm while satisfying computational, communication and privacy constraints. We explore the impact of different data-selection schemes as well as the impact of introducing deny lists during multiple runs of the algorithm. We test these improvements using extensive experimentation on the Reddit dataset~\cite{caldas2018leaf} on the task of learning the most frequent words.

相關內容

Motivated by the theory of spin-glasses in physics, we study the so-called reconstruction problem for the related distributions on the tree, and on the sparse random graph $G(n,d/n)$. Both cases, reduce naturally to studying broadcasting models on the tree, where each edge has its own broadcasting matrix, and this matrix is drawn independently from a predefined distribution. In this context, we study the effect of the configuration at the root to that of the vertices at distance $h$, as $h\to\infty$. We establish the reconstruction threshold for the cases where the broadcasting matrices give rise to symmetric, 2-spin Gibbs distributions. This threshold seems to be a natural extension of the well-known Kesten-Stigum bound which arises in the classic version of the reconstruction problem. Our results imply, as a special case, the reconstruction threshold for the well-known Edward-Anderson model of spin-glasses on the tree. Also, we extend our analysis to the setting of the Galton-Watson tree, and the random graph $G(n,d/n)$, where we establish the corresponding thresholds.Interestingly, for the Edward-Anderson model on the random graph, we show that the replica symmetry breaking phase transition, established in [Guerra and Toninelli:2004], coincides with the reconstruction threshold. Compared to the classical Gibbs distributions, the spin-glasses have a lot of unique features. In that respect, their study calls for new ideas, e.g., we introduce novel estimators for the reconstruction problem. Furthermore, note that the main technical challenge in the analysis is the presence of (too) many levels of randomness. We manage to circumvent this problem by utilising recently proposed tools coming from the analysis of Markov chains.

We propose a new framework for the sampling, compression, and analysis of distributions of point sets and other geometric objects embedded in Euclidean spaces. Our approach involves constructing a tensor called the RaySense sketch, which captures nearest neighbors from the underlying geometry of points along a set of rays. We explore various operations that can be performed on the RaySense sketch, leading to different properties and potential applications. Statistical information about the data set can be extracted from the sketch, independent of the ray set. Line integrals on point sets can be efficiently computed using the sketch. We also present several examples illustrating applications of the proposed strategy in practical scenarios.

I introduce a novel algorithm and accompanying Python library, named mlcausality, designed for the identification of nonlinear Granger causal relationships. This novel algorithm uses a flexible plug-in architecture that enables researchers to employ any nonlinear regressor as the base prediction model. Subsequently, I conduct a comprehensive performance analysis of mlcausality when the prediction regressor is the kernel ridge regressor with the radial basis function kernel. The results demonstrate that mlcausality employing kernel ridge regression achieves competitive AUC scores across a diverse set of simulated data. Furthermore, mlcausality with kernel ridge regression yields more finely calibrated $p$-values in comparison to rival algorithms. This enhancement enables mlcausality to attain superior accuracy scores when using intuitive $p$-value-based thresholding criteria. Finally, mlcausality with the kernel ridge regression exhibits significantly reduced computation times compared to existing nonlinear Granger causality algorithms. In fact, in numerous instances, this innovative approach achieves superior solutions within computational timeframes that are an order of magnitude shorter than those required by competing algorithms.

We propose a new sampler for robust estimators that always selects the sample with the highest probability of consisting only of inliers. After every unsuccessful iteration, the inlier probabilities are updated in a principled way via a Bayesian approach. The probabilities obtained by the deep network are used as prior (so-called neural guidance) inside the sampler. Moreover, we introduce a new loss that exploits, in a geometrically justifiable manner, the orientation and scale that can be estimated for any type of feature, e.g., SIFT or SuperPoint, to estimate two-view geometry. The new loss helps to learn higher-order information about the underlying scene geometry. Benefiting from the new sampler and the proposed loss, we combine the neural guidance with the state-of-the-art MAGSAC++. Adaptive Reordering Sampler with Neurally Guided MAGSAC (ARS-MAGSAC) is superior to the state-of-the-art in terms of accuracy and run-time on the PhotoTourism and KITTI datasets for essential and fundamental matrix estimation. The code and trained models are available at //github.com/weitong8591/ars_magsac.

In this paper, we propose localized versions of Weisfeiler-Leman (WL) algorithms in an effort to both increase the expressivity, as well as decrease the computational overhead. We focus on the specific problem of subgraph counting and give localized versions of $k-$WL for any $k$. We analyze the power of Local $k-$WL and prove that it is more expressive than $k-$WL and at most as expressive as $(k+1)-$WL. We give a characterization of patterns whose count as a subgraph and induced subgraph are invariant if two graphs are Local $k-$WL equivalent. We also introduce two variants of $k-$WL: Layer $k-$WL and recursive $k-$WL. These methods are more time and space efficient than applying $k-$WL on the whole graph. We also propose a fragmentation technique that guarantees the exact count of all induced subgraphs of size at most 4 using just $1-$WL. The same idea can be extended further for larger patterns using $k>1$. We also compare the expressive power of Local $k-$WL with other GNN hierarchies and show that given a bound on the time-complexity, our methods are more expressive than the ones mentioned in Papp and Wattenhofer[2022a].

We propose a novel unsupervised object localization method that allows us to explain the predictions of the model by utilizing self-supervised pre-trained models without additional finetuning. Existing unsupervised and self-supervised object localization methods often utilize class-agnostic activation maps or self-similarity maps of a pre-trained model. Although these maps can offer valuable information for localization, their limited ability to explain how the model makes predictions remains challenging. In this paper, we propose a simple yet effective unsupervised object localization method based on representer point selection, where the predictions of the model can be represented as a linear combination of representer values of training points. By selecting representer points, which are the most important examples for the model predictions, our model can provide insights into how the model predicts the foreground object by providing relevant examples as well as their importance. Our method outperforms the state-of-the-art unsupervised and self-supervised object localization methods on various datasets with significant margins and even outperforms recent weakly supervised and few-shot methods.

With the help of Generalized Estimating Equations, we identify locally D-optimal crossover designs for generalized linear models. We adopt the variance of parameters of interest as the objective function, which is minimized using constrained optimization to obtain optimal crossover designs. In this case, the traditional general equivalence theorem could not be used directly to check the optimality of obtained designs. In this manuscript, we derive a corresponding general equivalence theorem for crossover designs under generalized linear models.

In this paper, we tackle two challenges in multimodal learning for visual recognition: 1) when missing-modality occurs either during training or testing in real-world situations; and 2) when the computation resources are not available to finetune on heavy transformer models. To this end, we propose to utilize prompt learning and mitigate the above two challenges together. Specifically, our modality-missing-aware prompts can be plugged into multimodal transformers to handle general missing-modality cases, while only requiring less than 1% learnable parameters compared to training the entire model. We further explore the effect of different prompt configurations and analyze the robustness to missing modality. Extensive experiments are conducted to show the effectiveness of our prompt learning framework that improves the performance under various missing-modality cases, while alleviating the requirement of heavy model re-training. Code is available.

Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs---a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DiffPool, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DiffPool yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司