Previous studies have confirmed that by augmenting acoustic features with the place/manner of articulatory features, the speech enhancement (SE) process can be guided to consider the broad phonetic properties of the input speech when performing enhancement to attain performance improvements. In this paper, we explore the contextual information of articulatory attributes as additional information to further benefit SE. More specifically, we propose to improve the SE performance by leveraging losses from an end-to-end automatic speech recognition (E2E-ASR) model that predicts the sequence of broad phonetic classes (BPCs). We also developed multi-objective training with ASR and perceptual losses to train the SE system based on a BPC-based E2E-ASR. Experimental results from speech denoising, speech dereverberation, and impaired speech enhancement tasks confirmed that contextual BPC information improves SE performance. Moreover, the SE model trained with the BPC-based E2E-ASR outperforms that with the phoneme-based E2E-ASR. The results suggest that objectives with misclassification of phonemes by the ASR system may lead to imperfect feedback, and BPC could be a potentially better choice. Finally, it is noted that combining the most-confusable phonetic targets into the same BPC when calculating the additional objective can effectively improve the SE performance.
Lengthy evaluation times are common in many optimization problems such as direct policy search tasks, especially when they involve conducting evaluations in the physical world, e.g. in robotics applications. Often, when evaluating a solution over a fixed time period, it becomes clear that the objective value will not increase with additional computation time (for example, when a two-wheeled robot continuously spins on the spot). In such cases, it makes sense to stop the evaluation early to save computation time. However, most approaches to stop the evaluation are problem-specific and need to be specifically designed for the task at hand. Therefore, we propose an early stopping method for direct policy search. The proposed method only looks at the objective value at each time step and requires no problem-specific knowledge. We test the introduced stopping criterion in five direct policy search environments drawn from games, robotics, and classic control domains, and show that it can save up to 75% of the computation time. We also compare it with problem-specific stopping criteria and demonstrate that it performs comparably while being more generally applicable.
Current fake audio detection algorithms have achieved promising performances on most datasets. However, their performance may be significantly degraded when dealing with audio of a different dataset. The orthogonal weight modification to overcome catastrophic forgetting does not consider the similarity of genuine audio across different datasets. To overcome this limitation, we propose a continual learning algorithm for fake audio detection to overcome catastrophic forgetting, called Regularized Adaptive Weight Modification (RAWM). When fine-tuning a detection network, our approach adaptively computes the direction of weight modification according to the ratio of genuine utterances and fake utterances. The adaptive modification direction ensures the network can effectively detect fake audio on the new dataset while preserving its knowledge of old model, thus mitigating catastrophic forgetting. In addition, genuine audio collected from quite different acoustic conditions may skew their feature distribution, so we introduce a regularization constraint to force the network to remember the old distribution in this regard. Our method can easily be generalized to related fields, like speech emotion recognition. We also evaluate our approach across multiple datasets and obtain a significant performance improvement on cross-dataset experiments.
It is widely known that males and females typically possess different sound characteristics when singing, such as timbre and pitch, but it has never been explored whether these gender-based characteristics lead to a performance disparity in singing voice transcription (SVT), whose target includes pitch. Such a disparity could cause fairness issues and severely affect the user experience of downstream SVT applications. Motivated by this, we first demonstrate the female superiority of SVT systems, which is observed across different models and datasets. We find that different pitch distributions, rather than gender data imbalance, contribute to this disparity. To address this issue, we propose using an attribute predictor to predict gender labels and adversarially training the SVT system to enforce the gender-invariance of acoustic representations. Leveraging the prior knowledge that pitch distributions may contribute to the gender bias, we propose conditionally aligning acoustic representations between demographic groups by feeding note events to the attribute predictor. Empirical experiments on multiple benchmark SVT datasets show that our method significantly reduces gender bias (up to more than 50%) with negligible degradation of overall SVT performance, on both in-domain and out-of-domain singing data, thus offering a better fairness-utility trade-off.
Obtaining versions of deep neural networks that are both highly-accurate and highly-sparse is one of the main challenges in the area of model compression, and several high-performance pruning techniques have been investigated by the community. Yet, much less is known about the interaction between sparsity and the standard stochastic optimization techniques used for training sparse networks, and most existing work uses standard dense schedules and hyperparameters for training sparse networks. In this work, we examine the impact of high sparsity on model training using the standard computer vision and natural language processing sparsity benchmarks. We begin by showing that using standard dense training recipes for sparse training is suboptimal, and results in under-training. We provide new approaches for mitigating this issue for both sparse pre-training of vision models (e.g. ResNet50/ImageNet) and sparse fine-tuning of language models (e.g. BERT/GLUE), achieving state-of-the-art results in both settings in the high-sparsity regime, and providing detailed analyses for the difficulty of sparse training in both scenarios. Our work sets a new threshold in terms of the accuracies that can be achieved under high sparsity, and should inspire further research into improving sparse model training, to reach higher accuracies under high sparsity, but also to do so efficiently.
Inverse propensity weighting (IPW) is a popular method for estimating treatment effects from observational data. However, its correctness relies on the untestable (and frequently implausible) assumption that all confounders have been measured. This paper introduces a robust sensitivity analysis for IPW that estimates the range of treatment effects compatible with a given amount of unobserved confounding. The estimated range converges to the narrowest possible interval (under the given assumptions) that must contain the true treatment effect. Our proposal is a refinement of the influential sensitivity analysis by Zhao, Small, and Bhattacharya (2019), which we show gives bounds that are too wide even asymptotically. This analysis is based on new partial identification results for Tan (2006)'s marginal sensitivity model.
Many material properties are manifested in the morphological appearance and characterized with microscopic image, such as scanning electron microscopy (SEM). Polymer miscibility is a key physical quantity of polymer material and commonly and intuitively judged by SEM images. However, human observation and judgement for the images is time-consuming, labor-intensive and hard to be quantified. Computer image recognition with machine learning method can make up the defects of artificial judging, giving accurate and quantitative judgement. We achieve automatic miscibility recognition utilizing convolution neural network and transfer learning method, and the model obtains up to 94% accuracy. We also put forward a quantitative criterion for polymer miscibility with this model. The proposed method can be widely applied to the quantitative characterization of the microstructure and properties of various materials.
Bayes estimators are well known to provide a means to incorporate prior knowledge that can be expressed in terms of a single prior distribution. However, when this knowledge is too vague to express with a single prior, an alternative approach is needed. Gamma-minimax estimators provide such an approach. These estimators minimize the worst-case Bayes risk over a set $\Gamma$ of prior distributions that are compatible with the available knowledge. Traditionally, Gamma-minimaxity is defined for parametric models. In this work, we define Gamma-minimax estimators for general models and propose adversarial meta-learning algorithms to compute them when the set of prior distributions is constrained by generalized moments. Accompanying convergence guarantees are also provided. We also introduce a neural network class that provides a rich, but finite-dimensional, class of estimators from which a Gamma-minimax estimator can be selected. We illustrate our method in two settings, namely entropy estimation and a prediction problem that arises in biodiversity studies.
Recent advances in the performance of large language models (LLMs) have sparked debate over whether, given sufficient training, high-level human abilities emerge in such generic forms of artificial intelligence (AI). Despite the exceptional performance of LLMs on a wide range of tasks involving natural language processing and reasoning, there has been sharp disagreement as to whether their abilities extend to more creative human abilities. A core example is the ability to interpret novel metaphors. Given the enormous and non-curated text corpora used to train LLMs, a serious obstacle to designing tests is the requirement of finding novel yet high-quality metaphors that are unlikely to have been included in the training data. Here we assessed the ability of GPT-4, a state-of-the-art large language model, to provide natural-language interpretations of novel literary metaphors drawn from Serbian poetry and translated into English. Despite exhibiting no signs of having been exposed to these metaphors previously, the AI system consistently produced detailed and incisive interpretations. Human judge - blind to the fact that an AI model was involved - rated metaphor interpretations generated by GPT-4 as superior to those provided by a group of college students. In interpreting reversed metaphors, GPT-4, as well as humans, exhibited signs of sensitivity to the Gricean cooperative principle. These results indicate that LLMs such as GPT-4 have acquired an emergent ability to interpret complex novel metaphors.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
We address the task of automatically scoring the competency of candidates based on textual features, from the automatic speech recognition (ASR) transcriptions in the asynchronous video job interview (AVI). The key challenge is how to construct the dependency relation between questions and answers, and conduct the semantic level interaction for each question-answer (QA) pair. However, most of the recent studies in AVI focus on how to represent questions and answers better, but ignore the dependency information and interaction between them, which is critical for QA evaluation. In this work, we propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs. Specifically, we construct a sentence-level relational graph neural network to capture the dependency information of sentences in or between the question and the answer. Based on these graphs, we employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session. Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction. Empirical results conducted on CHNAT (a real-world dataset) validate that our proposed model significantly outperforms text-matching based benchmark models. Ablation studies and experimental results with 10 random seeds also show the effectiveness and stability of our models.