Biological organisms have acquired sophisticated body shapes for walking or climbing through million-year evolutionary processes. In contrast, the components of locomoting soft robots, such as legs and arms, are designed in trial-and-error loops guided by a priori knowledge and experience, which leaves considerable room for improvement. Here, we present optimized soft robots that performed a specific locomotion task without any a priori assumptions or knowledge of the layout and shapes of the limbs by fully exploiting the computational capabilities for topology optimization. The only requirements introduced were a design domain and a periodically acting pneumatic actuator. The freeform shape of a soft body was derived from iterative updates in a gradient-based topology optimization that incorporated complex physical phenomena, such as large deformations, contacts, material viscosity, and fluid-structure interactions, in transient problems. The locomotion tasks included a horizontal movement on flat ground (walking) and a vertical movement between two walls (climbing). Without any human intervention, optimized soft robots have limbs and exhibit locomotion similar to those of biological organisms. Linkage-like structures were formed for the climbing task to assign different movements to multiple legs with limited degrees of freedom in the actuator. We fabricated the optimized design using 3D printing and confirmed the performance of these robots. This study presents a new and efficient strategy for designing soft robots and other bioinspired systems, suggesting that a purely mathematical process can produce shapes reminiscent of nature's long-term evolution.
We introduce a general theoretical framework, designed for the study of gradient optimisation of deep neural networks, that encompasses ubiquitous architecture choices including batch normalisation, weight normalisation and skip connections. Our framework determines the curvature and regularity properties of multilayer loss landscapes in terms of their constituent layers, thereby elucidating the roles played by normalisation layers and skip connections in globalising these properties. We then demonstrate the utility of this framework in two respects. First, we give the only proof of which we are aware that a class of deep neural networks can be trained using gradient descent to global optima even when such optima only exist at infinity, as is the case for the cross-entropy cost. Second, we identify a novel causal mechanism by which skip connections accelerate training, which we verify predictively with ResNets on MNIST, CIFAR10, CIFAR100 and ImageNet.
Biological cells utilize membranes and liquid-like droplets, known as biomolecular condensates, to structure their interior. The interaction of droplets and membranes, despite being involved in several key biological processes, is so far little-understood. Here, we present a first numerical method to simulate the continuum dynamics of droplets interacting with deformable membranes via wetting. The method combines the advantages of the phase field method for multi-phase flow simulation and the arbitrary Lagrangian-Eulerian (ALE) method for an explicit description of the elastic surface. The model is thermodynamically consistent, coupling bulk hydrodynamics with capillary forces, as well as bending, tension, and stretching of a thin membrane. The method is validated by comparing simulations for single droplets to theoretical results of shape equations, and its capabilities are illustrated in 2D and 3D axisymmetric scenarios.
Dynamic treatment regimes (DTRs) formalize medical decision-making as a sequence of rules for different stages, mapping patient-level information to recommended treatments. In practice, estimating an optimal DTR using observational data from electronic medical record (EMR) databases can be complicated by covariates that are missing not at random (MNAR) due to informative monitoring of patients. Since complete case analysis can result in consistent estimation of outcome model parameters under the assumption of outcome-independent missingness \citep{Yang_Wang_Ding_2019}, Q-learning is a natural approach to accommodating MNAR covariates. However, the backward induction algorithm used in Q-learning can introduce complications, as MNAR covariates at later stages can result in MNAR pseudo-outcomes at earlier stages, leading to suboptimal DTRs, even if outcome variables are fully observed. To address this unique missing data problem in DTR settings, we propose two weighted Q-learning approaches where inverse probability weights for missingness of the pseudo-outcomes are obtained through estimating equations with valid nonresponse instrumental variables or sensitivity analysis. Asymptotic properties of the weighted Q-learning estimators are derived and the finite-sample performance of the proposed methods is evaluated and compared with alternative methods through extensive simulation studies. Using EMR data from the Medical Information Mart for Intensive Care database, we apply the proposed methods to investigate the optimal fluid strategy for sepsis patients in intensive care units.
Due to their intrinsic capabilities on parallel signal processing, optical neural networks (ONNs) have attracted extensive interests recently as a potential alternative to electronic artificial neural networks (ANNs) with reduced power consumption and low latency. Preliminary confirmation of the parallelism in optical computing has been widely done by applying the technology of wavelength division multiplexing (WDM) in the linear transformation part of neural networks. However, inter-channel crosstalk has obstructed WDM technologies to be deployed in nonlinear activation in ONNs. Here, we propose a universal WDM structure called multiplexed neuron sets (MNS) which apply WDM technologies to optical neurons and enable ONNs to be further compressed. A corresponding back-propagation (BP) training algorithm is proposed to alleviate or even cancel the influence of inter-channel crosstalk on MNS-based WDM-ONNs. For simplicity, semiconductor optical amplifiers (SOAs) are employed as an example of MNS to construct a WDM-ONN trained with the new algorithm. The result shows that the combination of MNS and the corresponding BP training algorithm significantly downsize the system and improve the energy efficiency to tens of times while giving similar performance to traditional ONNs.
Understanding whether and how treatment effects vary across subgroups is crucial to inform clinical practice and recommendations. Accordingly, the assessment of heterogeneous treatment effects (HTE) based on pre-specified potential effect modifiers has become a common goal in modern randomized trials. However, when one or more potential effect modifiers are missing, complete-case analysis may lead to bias and under-coverage. While statistical methods for handling missing data have been proposed and compared for individually randomized trials with missing effect modifier data, few guidelines exist for the cluster-randomized setting, where intracluster correlations in the effect modifiers, outcomes, or even missingness mechanisms may introduce further threats to accurate assessment of HTE. In this article, the performance of several missing data methods are compared through a simulation study of cluster-randomized trials with continuous outcome and missing binary effect modifier data, and further illustrated using real data from the Work, Family, and Health Study. Our results suggest that multilevel multiple imputation (MMI) and Bayesian MMI have better performance than other available methods, and that Bayesian MMI has lower bias and closer to nominal coverage than standard MMI when there are model specification or compatibility issues.
In a longitudinal clinical registry, different measurement instruments might have been used for assessing individuals at different time points. To combine them, we investigate deep learning techniques for obtaining a joint latent representation, to which the items of different measurement instruments are mapped. This corresponds to domain adaptation, an established concept in computer science for image data. Using the proposed approach as an example, we evaluate the potential of domain adaptation in a longitudinal cohort setting with a rather small number of time points, motivated by an application with different motor function measurement instruments in a registry of spinal muscular atrophy (SMA) patients. There, we model trajectories in the latent representation by ordinary differential equations (ODEs), where person-specific ODE parameters are inferred from baseline characteristics. The goodness of fit and complexity of the ODE solutions then allows to judge the measurement instrument mappings. We subsequently explore how alignment can be improved by incorporating corresponding penalty terms into model fitting. To systematically investigate the effect of differences between measurement instruments, we consider several scenarios based on modified SMA data, including scenarios where a mapping should be feasible in principle and scenarios where no perfect mapping is available. While misalignment increases in more complex scenarios, some structure is still recovered, even if the availability of measurement instruments depends on patient state. A reasonable mapping is feasible also in the more complex real SMA dataset. These results indicate that domain adaptation might be more generally useful in statistical modeling for longitudinal registry data.
In the field of medical imaging, the scarcity of large-scale datasets due to privacy restrictions stands as a significant barrier to develop large models for medical. To address this issue, we introduce SynFundus-1M, a high-quality synthetic dataset with over 1 million retinal fundus images and extensive disease and pathologies annotations, which is generated by a Denoising Diffusion Probabilistic Model. The SynFundus-Generator and SynFundus-1M achieve superior Frechet Inception Distance (FID) scores compared to existing methods on main-stream public real datasets. Furthermore, the ophthalmologists evaluation validate the difficulty in discerning these synthetic images from real ones, confirming the SynFundus-1M's authenticity. Through extensive experiments, we demonstrate that both CNN and ViT can benifit from SynFundus-1M by pretraining or training directly. Compared to datasets like ImageNet or EyePACS, models train on SynFundus-1M not only achieve better performance but also faster convergence on various downstream tasks.
We present ParrotTTS, a modularized text-to-speech synthesis model leveraging disentangled self-supervised speech representations. It can train a multi-speaker variant effectively using transcripts from a single speaker. ParrotTTS adapts to a new language in low resource setup and generalizes to languages not seen while training the self-supervised backbone. Moreover, without training on bilingual or parallel examples, ParrotTTS can transfer voices across languages while preserving the speaker specific characteristics, e.g., synthesizing fluent Hindi speech using a French speaker's voice and accent. We present extensive results in monolingual and multi-lingual scenarios. ParrotTTS outperforms state-of-the-art multi-lingual TTS models using only a fraction of paired data as latter.
Positron Emission Tomography (PET) enables functional imaging of deep brain structures, but the bulk and weight of current systems preclude their use during many natural human activities, such as locomotion. The proposed long-term solution is to construct a robotic system that can support an imaging system surrounding the subject's head, and then move the system to accommodate natural motion. This requires a system to measure the motion of the head with respect to the imaging ring, for use by both the robotic system and the image reconstruction software. We report here the design, calibration, and experimental evaluation of a parallel string encoder mechanism for sensing this motion. Our results indicate that with kinematic calibration, the measurement system can achieve accuracy within 0.5mm, especially for small motions.
Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.