亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we develop a numerical method to study the error estimates of the $\alpha$-stable central limit theorem under sublinear expectation with $\alpha \in(0,2)$, whose limit distribution can be characterized by a fully nonlinear integro-differential equation (PIDE). Based on the sequence of independent random variables, we propose a discrete approximation scheme for the fully nonlinear PIDE. With the help of the nonlinear stochastic analysis techniques and numerical analysis tools, we establish the error bounds for the discrete approximation scheme, which in turn provides a general error bound for the robust $\alpha$-stable central limit theorem, including the integrable case $\alpha \in(1,2)$ as well as the non-integrable case $\alpha \in(0,1]$. Finally, we provide some concrete examples to illustrate our main results and derive the precise convergence rates.

相關內容

We prove absolute regularity ($\beta$-mixing) for nonstationary and multivariate versions of two popular classes of integer-valued processes. We show how this result can be used to prove asymptotic normality of a least squares estimator of an involved model parameter.

Given an integer partition of $n$, we consider the impartial combinatorial game LCTR in which moves consist of removing either the left column or top row of its Young diagram. We show that for both normal and mis\`ere play, the optimal strategy can consist mostly of mirroring the opponent's moves. We also establish that both LCTR and Downright are domestic as well as returnable, and on the other hand neither tame nor forced. For both games, those structural observations allow for computing the Sprague-Grundy value any position in $O(\log(n))$ time, assuming that the time unit allows for reading an integer, or performing a basic arithmetic operation. This improves on the previously known bound of $O(n)$ due to Ili\'c (2019). We also cover some other complexity measures of both games, such as state-space complexity, and number of leaves and nodes in the corresponding game tree.

Recent extensive numerical experiments in high scale machine learning have allowed to uncover a quite counterintuitive phase transition, as a function of the ratio between the sample size and the number of parameters in the model. As the number of parameters $p$ approaches the sample size $n$, the generalisation error increases, but surprisingly, it starts decreasing again past the threshold $p=n$. This phenomenon, brought to the theoretical community attention in \cite{belkin2019reconciling}, has been thoroughly investigated lately, more specifically for simpler models than deep neural networks, such as the linear model when the parameter is taken to be the minimum norm solution to the least-squares problem, firstly in the asymptotic regime when $p$ and $n$ tend to infinity, see e.g. \cite{hastie2019surprises}, and recently in the finite dimensional regime and more specifically for linear models \cite{bartlett2020benign}, \cite{tsigler2020benign}, \cite{lecue2022geometrical}. In the present paper, we propose a finite sample analysis of non-linear models of \textit{ridge} type, where we investigate the \textit{overparametrised regime} of the double descent phenomenon for both the \textit{estimation problem} and the \textit{prediction} problem. Our results provide a precise analysis of the distance of the best estimator from the true parameter as well as a generalisation bound which complements recent works of \cite{bartlett2020benign} and \cite{chinot2020benign}. Our analysis is based on tools closely related to the continuous Newton method \cite{neuberger2007continuous} and a refined quantitative analysis of the performance in prediction of the minimum $\ell_2$-norm solution.

In this study, we present a precise anisotropic interpolation error estimate for the Morley finite element method (FEM) and apply it to fourth-order elliptical equations. We did not impose a shape-regularity mesh condition for the analysis. Therefore, anisotropic meshes can be used. The main contributions of this study include providing new proof of the consistency term. This enabled us to obtain an anisotropic consistency error estimate. The core idea of the proof involves using the relationship between the Raviart--Thomas and Morley finite element spaces. Our results show optimal convergence rates and imply that the modified Morley FEM may be effective for errors.

We introduce a relaxation for homomorphism problems that combines semidefinite programming with linear Diophantine equations, and propose a framework for the analysis of its power based on the spectral theory of association schemes. We use this framework to establish an unconditional lower bound against the semidefinite programming + linear equations model, by showing that the relaxation does not solve the approximate graph homomorphism problem and thus, in particular, the approximate graph colouring problem.

In this study, we consider the numerical solution of the Neumann initial boundary value problem for the wave equation in 2D domains. Employing the Laguerre transform with respect to the temporal variable, we effectively transform this problem into a series of Neumann elliptic problems. The development of a fundamental sequence for these elliptic equations provides us with the means to introduce modified double layer potentials. Consequently, we are able to derive a sequence of boundary hypersingular integral equations as a result of this transformation. To discretize the system of equations, we apply the Maue transform and implement the Nystr\"om method with trigonometric quadrature techniques. To demonstrate the practical utility of our approach, we provide numerical examples.

There are many numerical methods for solving partial different equations (PDEs) on manifolds such as classical implicit, finite difference, finite element, and isogeometric analysis methods which aim at improving the interoperability between finite element method and computer aided design (CAD) software. However, these approaches have difficulty when the domain has singularities since the solution at the singularity may be multivalued. This paper develops a novel numerical approach to solve elliptic PDEs on real, closed, connected, orientable, and almost smooth algebraic curves and surfaces. Our method integrates numerical algebraic geometry, differential geometry, and a finite difference scheme which is demonstrated on several examples.

We present a numerical iterative optimization algorithm for the minimization of a cost function consisting of a linear combination of three convex terms, one of which is differentiable, a second one is prox-simple and the third one is the composition of a linear map and a prox-simple function. The algorithm's special feature lies in its ability to approximate, in a single iteration run, the minimizers of the cost function for many different values of the parameters determining the relative weight of the three terms in the cost function. A proof of convergence of the algorithm, based on an inexact variable metric approach, is also provided. As a special case, one recovers a generalization of the primal-dual algorithm of Chambolle and Pock, and also of the proximal-gradient algorithm. Finally, we show how it is related to a primal-dual iterative algorithm based on inexact proximal evaluations of the non-smooth terms of the cost function.

We study the high-order local discontinuous Galerkin (LDG) method for the $p$-Laplace equation. We reformulate our spatial discretization as an equivalent convex minimization problem and use a preconditioned gradient descent method as the nonlinear solver. For the first time, a weighted preconditioner that provides $hk$-independent convergence is applied in the LDG setting. For polynomial order $k \geqslant 1$, we rigorously establish the solvability of our scheme and provide a priori error estimates in a mesh-dependent energy norm. Our error estimates are under a different and non-equivalent distance from existing LDG results. For arbitrarily high-order polynomials under the assumption that the exact solution has enough regularity, the error estimates demonstrate the potential for high-order accuracy. Our numerical results exhibit the desired convergence speed facilitated by the preconditioner, and we observe best convergence rates in gradient variables in alignment with linear LDG, and optimal rates in the primal variable when $1 < p \leqslant 2$.

When the eigenvalues of the coefficient matrix for a linear scalar ordinary differential equation are of large magnitude, its solutions exhibit complicated behaviour, such as high-frequency oscillations, rapid growth or rapid decay. The cost of representing such solutions using standard techniques grows with the magnitudes of the eigenvalues. As a consequence, the running times of most solvers for ordinary differential equations also grow with these eigenvalues. However, a large class of scalar ordinary differential equations with slowly-varying coefficients admit slowly-varying phase functions that can be represented at a cost which is bounded independent of the magnitudes of the eigenvalues of the corresponding coefficient matrix. Here, we introduce a numerical algorithm for constructing slowly-varying phase functions which represent the solutions of a linear scalar ordinary differential equation. Our method's running time depends on the complexity of the equation's coefficients, but is bounded independent of the magnitudes of the equation's eigenvalues. Once the phase functions have been constructed, essentially any reasonable initial or boundary value problem for the scalar equation can be easily solved. We present the results of numerical experiments showing that, despite its greater generality, our algorithm is competitive with state-of-the-art methods for solving highly-oscillatory second order differential equations. We also compare our method with Magnus-type exponential integrators and find that our approach is orders of magnitude faster in the high-frequency regime.

北京阿比特科技有限公司