The paper develops a typical management problem of a large power producer (i.e., he can partly influence the market price). In particular, he routinely needs to decide how much of his generation it is preferable to commit to fixed price bilateral contracts (e.g., futures) or to the spot market. However, he also needs to plan how to distribute the production across the different plants under his control. The two decisions, namely the sales-mix and the generation plan, naturally interact, since the opportunity to influence the spot price depends, among other things, by the amount of the energy that the producer directs on the spot market. We develop a risk management problem, since we consider an optimization problem combining a trade-off between expectation and conditional value at risk of the profit function of the producer. The sources of uncertainty are relatively large and encompass demand, renewables generation and the fuel costs of conventional plants. We also model endogenously the price of futures in a way reflecting an information advantage of a large power producer. In particular, it is assumed that the market forecast the price of futures in a naive way, namely not anticipating the impact of the large producer on the spot market. The paper provides a MILP formulation of the problem, and it analyzes the solution through a simulation based on Spanish power market data.
Civil and maritime engineering systems, among others, from bridges to offshore platforms and wind turbines, must be efficiently managed as they are exposed to deterioration mechanisms throughout their operational life, such as fatigue or corrosion. Identifying optimal inspection and maintenance policies demands the solution of a complex sequential decision-making problem under uncertainty, with the main objective of efficiently controlling the risk associated with structural failures. Addressing this complexity, risk-based inspection planning methodologies, supported often by dynamic Bayesian networks, evaluate a set of pre-defined heuristic decision rules to reasonably simplify the decision problem. However, the resulting policies may be compromised by the limited space considered in the definition of the decision rules. Avoiding this limitation, Partially Observable Markov Decision Processes (POMDPs) provide a principled mathematical methodology for stochastic optimal control under uncertain action outcomes and observations, in which the optimal actions are prescribed as a function of the entire, dynamically updated, state probability distribution. In this paper, we combine dynamic Bayesian networks with POMDPs in a joint framework for optimal inspection and maintenance planning, and we provide the formulation for developing both infinite and finite horizon POMDPs in a structural reliability context. The proposed methodology is implemented and tested for the case of a structural component subject to fatigue deterioration, demonstrating the capability of state-of-the-art point-based POMDP solvers for solving the underlying planning optimization problem. Within the numerical experiments, POMDP and heuristic-based policies are thoroughly compared, and results showcase that POMDPs achieve substantially lower costs as compared to their counterparts, even for traditional problem settings.
With the rising extension of renewable energies, the intraday electricity markets have recorded a growing popularity amongst traders as well as electric utilities to cope with the induced volatility of the energy supply. Through their short trading horizon and continuous nature, the intraday markets offer the ability to adjust trading decisions from the day-ahead market or reduce trading risk in a short-term notice. Producers of renewable energies utilize the intraday market to lower their forecast risk, by modifying their provided capacities based on current forecasts. However, the market dynamics are complex due to the fact that the power grids have to remain stable and electricity is only partly storable. Consequently, robust and intelligent trading strategies are required that are capable to operate in the intraday market. In this work, we propose a novel autonomous trading approach based on Deep Reinforcement Learning (DRL) algorithms as a possible solution. For this purpose, we model the intraday trade as a Markov Decision Problem (MDP) and employ the Proximal Policy Optimization (PPO) algorithm as our DRL approach. A simulation framework is introduced that enables the trading of the continuous intraday price in a resolution of one minute steps. We test our framework in a case study from the perspective of a wind park operator. We include next to general trade information both price and wind forecasts. On a test scenario of German intraday trading results from 2018, we are able to outperform multiple baselines with at least 45.24% improvement, showing the advantage of the DRL algorithm. However, we also discuss limitations and enhancements of the DRL agent, in order to increase the performance in future works.
Shared practices to assess the diversity of retrieval system results are still debated in the Information Retrieval community, partly because of the challenges of determining what diversity means in specific scenarios, and of understanding how diversity is perceived by end-users. The field of Music Information Retrieval is not exempt from this issue. Even if fields such as Musicology or Sociology of Music have a long tradition in questioning the representation and the impact of diversity in cultural environments, such knowledge has not been yet embedded into the design and development of music technologies. In this paper, focusing on electronic music, we investigate the characteristics of listeners, artists, and tracks that are influential in the perception of diversity. Specifically, we center our attention on 1) understanding the relationship between perceived diversity and computational methods to measure diversity, and 2) analyzing how listeners' domain knowledge and familiarity influence such perceived diversity. To accomplish this, we design a user-study in which listeners are asked to compare pairs of lists of tracks and artists, and to select the most diverse list from each pair. We compare participants' ratings with results obtained through computational models built using audio tracks' features and artist attributes. We find that such models are generally aligned with participants' choices when most of them agree that one list is more diverse than the other, while they present a mixed behaviour in cases where participants have little agreement. Moreover, we observe how differences in domain knowledge, familiarity, and demographics can influence the level of agreement among listeners, and between listeners and diversity metrics computed automatically.
Joint parcel delivery by trucks and drones has enjoyed significant attention for some time, as the advantages of one delivery method offset the disadvantages of the other. This paper focuses on the vehicle routing problem with drones and drone speed selection (VRPD-DSS), which considers speed-dependent energy consumption and drone-charging in detail. For this purpose, we formulate a comprehensive mixed-integer problem that aims to minimize the operational costs consisting of fuel consumption costs of the trucks, labor costs for the drivers, and energy costs of the drones. The speed at which a drone performs a flight must be selected from a discrete set. We introduce preprocessing steps to eliminate dominated speeds for a flight to reduce the problem size and use valid inequalities to accelerate the solution process. The consideration of speed-dependent energy consumption leads to the fact that it is advisable to perform different flights at different speeds and not to consistently operate a drone at maximum speed. Instead, drone speed should be selected to balance drone range and speed of delivery. Our extensive computational study of a rural real-world setting shows that, by modeling energy consumption realistically, the savings in operational costs compared to truck-only delivery are significant but smaller than those identified in previously published work. Our analysis further reveals that the greatest savings stem from the fact that overall delivery time decreases compared to truck-only delivery, allowing costly truck-driver time to be reduced. The additional energy costs of the drone, however, are largely negligible.
The Goppa Code Distinguishing (GD) problem asks to distinguish efficiently a generator matrix of a Goppa code from a randomly drawn one. We revisit a distinguisher for alternant and Goppa codes through a new approach, namely by studying the dimension of square codes. We provide here a rigorous upper bound for the dimension of the square of the dual of an alternant or Goppa code, while the previous approach only provided algebraic explanations based on heuristics. Moreover, for Goppa codes, our proof extends to the non-binary case as well, thus providing an algebraic explanation for the distinguisher which was missing up to now. All the upper bounds are tight and match experimental evidence. Our work also introduces new algebraic results about products of trace codes in general and of dual of alternant and Goppa codes in particular, clarifying their square code structure. This might be of interest for cryptanalysis purposes.
Periodic signals play an important role in daily lives. Although conventional sequential models have shown remarkable success in various fields, they still come short in modeling periodicity; they either collapse, diverge or ignore details. In this paper, we introduce a novel framework inspired by Fourier series to generate periodic signals. We first decompose the given signals into multiple sines and cosines and then conditionally generate periodic signals with the output components. We have shown our model efficacy on three tasks: reconstruction, imputation and conditional generation. Our model outperforms baselines in all tasks and shows more stable and refined results.
This paper seeks to develop a deeper understanding of the fundamental properties of neural text generations models. The study of artifacts that emerge in machine generated text as a result of modeling choices is a nascent research area. Previously, the extent and degree to which these artifacts surface in generated text has not been well studied. In the spirit of better understanding generative text models and their artifacts, we propose the new task of distinguishing which of several variants of a given model generated a piece of text, and we conduct an extensive suite of diagnostic tests to observe whether modeling choices (e.g., sampling methods, top-$k$ probabilities, model architectures, etc.) leave detectable artifacts in the text they generate. Our key finding, which is backed by a rigorous set of experiments, is that such artifacts are present and that different modeling choices can be inferred by observing the generated text alone. This suggests that neural text generators may be more sensitive to various modeling choices than previously thought.
People ask questions that are far richer, more informative, and more creative than current AI systems. We propose a neural program generation framework for modeling human question asking, which represents questions as formal programs and generates programs with an encoder-decoder based deep neural network. From extensive experiments using an information-search game, we show that our method can ask optimal questions in synthetic settings, and predict which questions humans are likely to ask in unconstrained settings. We also propose a novel grammar-based question generation framework trained with reinforcement learning, which is able to generate creative questions without supervised data.
Accurately classifying malignancy of lesions detected in a screening scan plays a critical role in reducing false positives. Through extracting and analyzing a large numbers of quantitative image features, radiomics holds great potential to differentiate the malignant tumors from benign ones. Since not all radiomic features contribute to an effective classifying model, selecting an optimal feature subset is critical. This work proposes a new multi-objective based feature selection (MO-FS) algorithm that considers both sensitivity and specificity simultaneously as the objective functions during the feature selection. In MO-FS, we developed a modified entropy based termination criterion (METC) to stop the algorithm automatically rather than relying on a preset number of generations. We also designed a solution selection methodology for multi-objective learning using the evidential reasoning approach (SMOLER) to automatically select the optimal solution from the Pareto-optimal set. Furthermore, an adaptive mutation operation was developed to generate the mutation probability in MO-FS automatically. The MO-FS was evaluated for classifying lung nodule malignancy in low-dose CT and breast lesion malignancy in digital breast tomosynthesis. Compared with other commonly used feature selection methods, the experimental results for both lung nodule and breast lesion malignancy classification demonstrated that the feature set by selected MO-FS achieved better classification performance.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.