亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Shared practices to assess the diversity of retrieval system results are still debated in the Information Retrieval community, partly because of the challenges of determining what diversity means in specific scenarios, and of understanding how diversity is perceived by end-users. The field of Music Information Retrieval is not exempt from this issue. Even if fields such as Musicology or Sociology of Music have a long tradition in questioning the representation and the impact of diversity in cultural environments, such knowledge has not been yet embedded into the design and development of music technologies. In this paper, focusing on electronic music, we investigate the characteristics of listeners, artists, and tracks that are influential in the perception of diversity. Specifically, we center our attention on 1) understanding the relationship between perceived diversity and computational methods to measure diversity, and 2) analyzing how listeners' domain knowledge and familiarity influence such perceived diversity. To accomplish this, we design a user-study in which listeners are asked to compare pairs of lists of tracks and artists, and to select the most diverse list from each pair. We compare participants' ratings with results obtained through computational models built using audio tracks' features and artist attributes. We find that such models are generally aligned with participants' choices when most of them agree that one list is more diverse than the other, while they present a mixed behaviour in cases where participants have little agreement. Moreover, we observe how differences in domain knowledge, familiarity, and demographics can influence the level of agreement among listeners, and between listeners and diversity metrics computed automatically.

相關內容

Point-of-Interest recommendation is an increasing research and developing area within the widely adopted technologies known as Recommender Systems. Among them, those that exploit information coming from Location-Based Social Networks (LBSNs) are very popular nowadays and could work with different information sources, which pose several challenges and research questions to the community as a whole. We present a systematic review focused on the research done in the last 10 years about this topic. We discuss and categorize the algorithms and evaluation methodologies used in these works and point out the opportunities and challenges that remain open in the field. More specifically, we report the leading recommendation techniques and information sources that have been exploited more often (such as the geographical signal and deep learning approaches) while we also alert about the lack of reproducibility in the field that may hinder real performance improvements.

Energy harvesting battery-free embedded devices rely only on ambient energy harvesting that enables stand-alone and sustainable IoT applications. These devices execute programs when the harvested ambient energy in their energy reservoir is sufficient to operate and stop execution abruptly (and start charging) otherwise. These intermittent programs have varying timing behavior under different energy conditions, hardware configurations, and program structures. This paper presents Energy-aware Timing Analysis of intermittent Programs (ETAP), a probabilistic symbolic execution approach that analyzes the timing and energy behavior of intermittent programs at compile time. ETAP symbolically executes the given program while taking time and energy cost models for ambient energy and dynamic energy consumption into account. We evaluated ETAP on several intermittent programs and compared the compile-time analysis results with executions on real hardware. The results show that ETAP's normalized prediction accuracy is 99.5%, and it speeds up the timing analysis by at least two orders of magnitude compared to manual testing.

In the world of Information Technology, new computing paradigms, driven by requirements of different classes of problems and applications, emerge rapidly. These new computing paradigms pose many new research challenges. Researchers from different disciplines are working together to develop innovative solutions addressing them. In newer research areas with many unknowns, creating roadmaps, enabling tools, inspiring technological and application demonstrators offer confidence and prove feasibility and effectiveness of new paradigm. Drawing on our experience, we share strategy for advancing the field and community building in new and emerging computing research areas. We discuss how the development simulators can be cost-effective in accelerating design of real systems. We highlight strategic role played by different types of publications, conferences, and educational programs. We illustrate effectiveness of elements of our strategy with a case study on progression of cloud computing paradigm.

Automated reviewer recommendation for scientific conferences currently relies on the assumption that the program committee has the necessary expertise to handle all submissions. However, topical discrepancies between received submissions and reviewer candidates might lead to unreliable reviews or overburdening of reviewers, and may result in the rejection of high-quality papers. In this work, we present DiveRS, an explainable flow-based reviewer assignment approach, which automatically generates reviewer assignments as well as suggestions for extending the current program committee with new reviewer candidates. Our algorithm focuses on the diversity of the set of reviewers assigned to papers, which has been mostly disregarded in prior work. Specifically, we consider diversity in terms of professional background, location and seniority. Using two real world conference datasets for evaluation, we show that DiveRS improves diversity compared to both real assignments and a state-of-the-art flow-based reviewer assignment approach. Further, based on human assessments by former PC chairs, we find that DiveRS can effectively trade off some of the topical suitability in order to construct more diverse reviewer assignments.

Imitation learning aims to extract knowledge from human experts' demonstrations or artificially created agents in order to replicate their behaviors. Its success has been demonstrated in areas such as video games, autonomous driving, robotic simulations and object manipulation. However, this replicating process could be problematic, such as the performance is highly dependent on the demonstration quality, and most trained agents are limited to perform well in task-specific environments. In this survey, we provide a systematic review on imitation learning. We first introduce the background knowledge from development history and preliminaries, followed by presenting different taxonomies within Imitation Learning and key milestones of the field. We then detail challenges in learning strategies and present research opportunities with learning policy from suboptimal demonstration, voice instructions and other associated optimization schemes.

In recommender systems, modeling user-item behaviors is essential for user representation learning. Existing sequential recommenders consider the sequential correlations between historically interacted items for capturing users' historical preferences. However, since users' preferences are by nature time-evolving and diversified, solely modeling the historical preference (without being aware of the time-evolving trends of preferences) can be inferior for recommending complementary or fresh items and thus hurt the effectiveness of recommender systems. In this paper, we bridge the gap between the past preference and potential future preference by proposing the future-aware diverse trends (FAT) framework. By future-aware, for each inspected user, we construct the future sequences from other similar users, which comprise of behaviors that happen after the last behavior of the inspected user, based on a proposed neighbor behavior extractor. By diverse trends, supposing the future preferences can be diversified, we propose the diverse trends extractor and the time-aware mechanism to represent the possible trends of preferences for a given user with multiple vectors. We leverage both the representations of historical preference and possible future trends to obtain the final recommendation. The quantitative and qualitative results from relatively extensive experiments on real-world datasets demonstrate the proposed framework not only outperforms the state-of-the-art sequential recommendation methods across various metrics, but also makes complementary and fresh recommendations.

Concepts embody the knowledge of the world and facilitate the cognitive processes of human beings. Mining concepts from web documents and constructing the corresponding taxonomy are core research problems in text understanding and support many downstream tasks such as query analysis, knowledge base construction, recommendation, and search. However, we argue that most prior studies extract formal and overly general concepts from Wikipedia or static web pages, which are not representing the user perspective. In this paper, we describe our experience of implementing and deploying ConcepT in Tencent QQ Browser. It discovers user-centered concepts at the right granularity conforming to user interests, by mining a large amount of user queries and interactive search click logs. The extracted concepts have the proper granularity, are consistent with user language styles and are dynamically updated. We further present our techniques to tag documents with user-centered concepts and to construct a topic-concept-instance taxonomy, which has helped to improve search as well as news feeds recommendation in Tencent QQ Browser. We performed extensive offline evaluation to demonstrate that our approach could extract concepts of higher quality compared to several other existing methods. Our system has been deployed in Tencent QQ Browser. Results from online A/B testing involving a large number of real users suggest that the Impression Efficiency of feeds users increased by 6.01% after incorporating the user-centered concepts into the recommendation framework of Tencent QQ Browser.

Recently, the state-of-the-art models for image captioning have overtaken human performance based on the most popular metrics, such as BLEU, METEOR, ROUGE, and CIDEr. Does this mean we have solved the task of image captioning? The above metrics only measure the similarity of the generated caption to the human annotations, which reflects its accuracy. However, an image contains many concepts and multiple levels of detail, and thus there is a variety of captions that express different concepts and details that might be interesting for different humans. Therefore only evaluating accuracy is not sufficient for measuring the performance of captioning models --- the diversity of the generated captions should also be considered. In this paper, we proposed a new metric for measuring the diversity of image captions, which is derived from latent semantic analysis and kernelized to use CIDEr similarity. We conduct extensive experiments to re-evaluate recent captioning models in the context of both diversity and accuracy. We find that there is still a large gap between the model and human performance in terms of both accuracy and diversity and the models that have optimized accuracy (CIDEr) have low diversity. We also show that balancing the cross-entropy loss and CIDEr reward in reinforcement learning during training can effectively control the tradeoff between diversity and accuracy of the generated captions.

Privacy is a major good for users of personalized services such as recommender systems. When applied to the field of health informatics, privacy concerns of users may be amplified, but the possible utility of such services is also high. Despite availability of technologies such as k-anonymity, differential privacy, privacy-aware recommendation, and personalized privacy trade-offs, little research has been conducted on the users' willingness to share health data for usage in such systems. In two conjoint-decision studies (sample size n=521), we investigate importance and utility of privacy-preserving techniques related to sharing of personal health data for k-anonymity and differential privacy. Users were asked to pick a preferred sharing scenario depending on the recipient of the data, the benefit of sharing data, the type of data, and the parameterized privacy. Users disagreed with sharing data for commercial purposes regarding mental illnesses and with high de-anonymization risks but showed little concern when data is used for scientific purposes and is related to physical illnesses. Suggestions for health recommender system development are derived from the findings.

Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field.

北京阿比特科技有限公司