亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Wireless communication systems have almost exclusively operated in the far-field of antennas and antenna arrays, which is conventionally characterized by having propagation distances beyond the Fraunhofer distance. This is natural since the Fraunhofer distance is normally only a few wavelengths. With the advent of active arrays and passive reconfigurable intelligent surfaces (RIS) that are physically large, it is plausible that the transmitter or receiver is located in between the Fraunhofer distance of the individual array/surface elements and the Fraunhofer distance of the entire array. An RIS then can be configured to reflect the incident waveform towards a point in the radiative near-field of the surface, resulting in a beam with finite depth, or as a conventional angular beam with infinity focus, which only results in amplification in the far-field. To understand when these different options are viable, an accurate characterization of the near-field behaviors is necessary. In this paper, we revisit the motivation and approximations behind the Fraunhofer distance and show that it is not the right metric for determining when near-field focusing is possible. We obtain the distance range where finite-depth beamforming is possible and the distance where the beamforming gain tapers off.

相關內容

 Surface 是微軟公司( )旗下一系列使用 Windows 10(早期為 Windows 8.X)操作系統的電腦產品,目前有 Surface、Surface Pro 和 Surface Book 三個系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由時任微軟 CEO 史蒂夫·鮑爾默發布于在洛杉磯舉行的記者會,2012 年 10 月 26 日上市銷售。

We show that the second-order accurate generalized-$\alpha$ method on a uniform temporal mesh may be viewed as an implicit midpoint method on a shifted temporal mesh. With this insight, we demonstrate generalized-$\alpha$ time integration of a finite element spatial discretization of a conservation law system results in a fully-discrete method admitting discrete balance laws when (i) the time integration is second-order accurate, (ii) a uniform temporal mesh is employed, (iii) the spatial discretization is conservative, and (iv) conservation variables are discretized.

Intelligent reflecting surface (IRS) has emerged as a cost-effective solution to enhance wireless communication performance via passive signal reflection. Existing works on IRS have mainly focused on investigating IRS's passive beamforming/reflection design to boost the communication rate for users assuming that their channel state information (CSI) is fully or partially known. However, how to exploit IRS to improve the wireless transmission reliability without any CSI, which is typical in high-mobility/delay-sensitive communication scenarios, remains largely open. In this paper, we study a new IRS-aided communication system with the IRS integrated to its aided access point (AP) to achieve both functions of transmit diversity and passive beamforming simultaneously. Specifically, we first show an interesting result that the IRS's passive beamforming gain in any direction is invariant to the common phase-shift applied to all of its reflecting elements. Accordingly, we design the common phase-shift of IRS elements to achieve transmit diversity at the AP side without the need of any CSI of the users. In addition, we propose a practical method for the users to estimate the CSI at the receiver side for information decoding. Meanwhile, we show that the conventional passive beamforming gain of IRS can be retained for the other users with their CSI known at the AP. Furthermore, we derive the asymptotic performance of both IRS-aided transmit diversity and passive beamforming in closed-form, by considering the large-scale IRS with an infinite number of elements. Numerical results validate our analysis and show the performance gains of the proposed IRS-aided simultaneous transmit diversity and passive beamforming scheme over other benchmark schemes.

In this paper, a comprehensive performance analysis of a distributed intelligent reflective surfaces (IRSs)-aided communication system is presented. First, the optimal signal-to-noise ratio (SNR), which is attainable through the direct and reflected channels, is quantified by controlling the phase shifts of the distributed IRS. Next, this optimal SNR is statistically characterized by deriving tight approximations to the exact probability density function (PDF) and cumulative distribution function (CDF) for Nakagami-$m$ fading. The accuracy/tightness of this statistical characterization is investigated by deriving the Kullback-Leibler divergence. Our PDF/CDF analysis is used to derive tight approximations/bounds for the outage probability, achievable rate, and average symbol error rate (SER) in closed-form. To obtain useful insights, the asymptotic outage probability and average SER are derived for the high SNR regime. Thereby, the achievable diversity order and array gains are quantified. Our asymptotic performance analysis reveals that the diversity order can be boosted by using distributed passive IRSs without generating additional electromagnetic (EM) waves via active radio frequency chains. Our asymptotic rate analysis shows that the lower and upper rate bounds converge to an asymptotic limit in large reflective element regime. Our analysis is validated via Monte-Carlo simulations. We present a rigorous set of numerical results to investigate the performance gains of the proposed system model. Our analytical and numerical results reveal that the performance of single-input single-output wireless systems can be boosted by recycling the EM waves generated by a transmitter through distributed passive IRS reflections to enable constructive signal combining at a receiver.

The present study defines a new statistic for detecting laboratory effects in the analysis of ordinal variation (ORDANOVA). The ORDANOVA is an analysis method similar to one-way analysis of variance for analysing ordinal data obtained from interlaboratory comparison studies. In this paper, we present an approximate continuous distribution for the new statistic for the case of an arbitrary number of ordinal levels, and we demonstrate that $alpha$-percentiles of the distribution are suitable criteria for conducting statistical tests. In addition, a real example involving data from an interlaboratory comparison study is analysed using the proposed statistic.

In this work, we consider fracture propagation in nearly incompressible and (fully) incompressible materials using a phase-field formulation. We use a mixed form of the elasticity equation to overcome volume locking effects and develop a robust, nonlinear and linear solver scheme and preconditioner for the resulting system. The coupled variational inequality system, which is solved monolithically, consists of three unknowns: displacements, pressure, and phase-field. Nonlinearities due to coupling, constitutive laws, and crack irreversibility are solved using a combined Newton algorithm for the nonlinearities in the partial differential equation and employing a primal-dual active set strategy for the crack irreverrsibility constraint. The linear system in each Newton step is solved iteratively with a flexible generalized minimal residual method (GMRES). The key contribution of this work is the development of a problem-specific preconditioner that leverages the saddle-point structure of the displacement and pressure variable. Four numerical examples in pure solids and pressure-driven fractures are conducted on uniformly and locally refined meshes to investigate the robustness of the solver concerning the Poisson ratio as well as the discretization and regularization parameters.

This paper proposes a deep learning approach to a class of active sensing problems in wireless communications in which an agent sequentially interacts with an environment over a predetermined number of time frames to gather information in order to perform a sensing or actuation task for maximizing some utility function. In such an active learning setting, the agent needs to design an adaptive sensing strategy sequentially based on the observations made so far. To tackle such a challenging problem in which the dimension of historical observations increases over time, we propose to use a long short-term memory (LSTM) network to exploit the temporal correlations in the sequence of observations and to map each observation to a fixed-size state information vector. We then use a deep neural network (DNN) to map the LSTM state at each time frame to the design of the next measurement step. Finally, we employ another DNN to map the final LSTM state to the desired solution. We investigate the performance of the proposed framework for adaptive channel sensing problems in wireless communications. In particular, we consider the adaptive beamforming problem for mmWave beam alignment and the adaptive reconfigurable intelligent surface sensing problem for reflection alignment. Numerical results demonstrate that the proposed deep active sensing strategy outperforms the existing adaptive or nonadaptive sensing schemes.

The \emph{turnpike property} in contemporary macroeconomics asserts that if an economic planner seeks to move an economy from one level of capital to another, then the most efficient path, as long as the planner has enough time, is to rapidly move stock to a level close to the optimal stationary or constant path, then allow for capital to develop along that path until the desired term is nearly reached, at which point the stock ought to be moved to the final target. Motivated in part by its nature as a resource allocation strategy, over the past decade, the turnpike property has also been shown to hold for several classes of partial differential equations arising in mechanics. When formalized mathematically, the turnpike theory corroborates the insights from economics: for an optimal control problem set in a finite-time horizon, optimal controls and corresponding states, are close (often exponentially), during most of the time, except near the initial and final time, to the optimal control and corresponding state for the associated stationary optimal control problem. In particular, the former are mostly constant over time. This fact provides a rigorous meaning to the asymptotic simplification that some optimal control problems appear to enjoy over long time intervals, allowing the consideration of the corresponding stationary problem for computing and applications. We review a slice of the theory developed over the past decade --the controllability of the underlying system is an important ingredient, and can even be used to devise simple turnpike-like strategies which are nearly optimal--, and present several novel applications, including, among many others, the characterization of Hamilton-Jacobi-Bellman asymptotics, and stability estimates in deep learning via residual neural networks.

Sparse Principal Component Analysis (PCA) is a prevalent tool across a plethora of subfields of applied statistics. While several results have characterized the recovery error of the principal eigenvectors, these are typically in spectral or Frobenius norms. In this paper, we provide entrywise $\ell_{2,\infty}$ bounds for Sparse PCA under a general high-dimensional subgaussian design. In particular, our results hold for any algorithm that selects the correct support with high probability, those that are sparsistent. Our bound improves upon known results by providing a finer characterization of the estimation error, and our proof uses techniques recently developed for entrywise subspace perturbation theory.

In pursuance of the unused spectrum in higher frequencies, millimeter wave (mmWave) bands have a pivotal role. However, the high path-loss and poor scattering associated with mmWave communications highlight the necessity of employing effective beamforming techniques. In order to efficiently search for the beam to serve a user and to jointly serve multiple users it is often required to use a composite beam which consists of multiple disjoint lobes. A composite beam covers multiple desired angular coverage intervals (ACIs) and ideally has maximum and uniform gain (smoothness) within each desired ACI, negligible gain (leakage) outside the desired ACIs, and sharp edges. We propose an algorithm for designing such ideal composite codebook by providing an analytical closed-form solution with low computational complexity. There is a fundamental trade-off between the gain, leakage and smoothness of the beams. Our design allows to achieve different values in such trade-off based on changing the design parameters. We highlight the shortcomings of the uniform linear arrays (ULAs) in building arbitrary composite beams. Consequently, we use a recently introduced twin-ULA (TULA) antenna structure to effectively resolve these inefficiencies. Numerical results are used to validate the theoretical findings.

It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.

北京阿比特科技有限公司