亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Context. Computer workers in general, and software developers specifically, are under a high amount of stress due to continuous deadlines and, often, over-commitment. Objective. This study investigates the effects of a neuroplasticity practice, a specific breathing practice, on the attention awareness, well-being, perceived productivity, and self-efficacy of computer workers. Method. We created a questionnaire mainly from existing, validated scales as entry and exit survey for data points for comparison before and after the intervention. The intervention was a 12-week program with a weekly live session that included a talk on a well-being topic and a facilitated group breathing session. During the intervention period, we solicited one daily journal note and one weekly well-being rating. We replicated the intervention in a similarly structured 8-week program. The data was analyzed using a Bayesian multi-level model for the quantitative part and thematic analysis for the qualitative part. Results. The intervention showed improvements in participants' experienced inner states despite an ongoing pandemic and intense outer circumstances for most. Over the course of the study, we found an improvement in the participants' ratings of how often they found themselves in good spirits as well as in a calm and relaxed state. We also aggregate a large number of deep inner reflections and growth processes that may not have surfaced for the participants without deliberate engagement in such a program. Conclusion. The data indicates usefulness and effectiveness of an intervention for computer workers in terms of increasing well-being and resilience. Everyone needs a way to deliberately relax, unplug, and recover. Breathing practice is a simple way to do so, and the results call for establishing a larger body of work to make this common practice.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

The approximate uniform sampling of graph realizations with a given degree sequence is an everyday task in several social science, computer science, engineering etc. projects. One approach is using Markov chains. The best available current result about the well-studied switch Markov chain is that it is rapidly mixing on P-stable degree sequences (see DOI:10.1016/j.ejc.2021.103421). The switch Markov chain does not change any degree sequence. However, there are cases where degree intervals are specified rather than a single degree sequence. (A natural scenario where this problem arises is in hypothesis testing on social networks that are only partially observed.) Rechner, Strowick, and M\"uller-Hannemann introduced in 2018 the notion of degree interval Markov chain which uses three (separately well-studied) local operations (switch, hinge-flip and toggle), and employing on degree sequence realizations where any two sequences under scrutiny have very small coordinate-wise distance. Recently Amanatidis and Kleer published a beautiful paper (arXiv:2110.09068), showing that the degree interval Markov chain is rapidly mixing if the sequences are coming from a system of very thin intervals which are centered not far from a regular degree sequence. In this paper we extend substantially their result, showing that the degree interval Markov chain is rapidly mixing if the intervals are centred at P-stable degree sequences.

In recent years, the field of explainable AI (XAI) has produced a vast collection of algorithms, providing a useful toolbox for researchers and practitioners to build XAI applications. With the rich application opportunities, explainability is believed to have moved beyond a demand by data scientists or researchers to comprehend the models they develop, to an essential requirement for people to trust and adopt AI deployed in numerous domains. However, explainability is an inherently human-centric property and the field is starting to embrace human-centered approaches. Human-computer interaction (HCI) research and user experience (UX) design in this area are becoming increasingly important. In this chapter, we begin with a high-level overview of the technical landscape of XAI algorithms, then selectively survey our own and other recent HCI works that take human-centered approaches to design, evaluate, and provide conceptual and methodological tools for XAI. We ask the question "what are human-centered approaches doing for XAI" and highlight three roles that they play in shaping XAI technologies by helping navigate, assess and expand the XAI toolbox: to drive technical choices by users' explainability needs, to uncover pitfalls of existing XAI methods and inform new methods, and to provide conceptual frameworks for human-compatible XAI.

Artificial intelligence (AI) is gaining momentum, and its importance for the future of work in many areas, such as medicine and banking, is continuously rising. However, insights on the effective collaboration of humans and AI are still rare. Typically, AI supports humans in decision-making by addressing human limitations. However, it may also evoke human bias, especially in the form of automation bias as an over-reliance on AI advice. We aim to shed light on the potential to influence automation bias by explainable AI (XAI). In this pre-test, we derive a research model and describe our study design. Subsequentially, we conduct an online experiment with regard to hotel review classifications and discuss first results. We expect our research to contribute to the design and development of safe hybrid intelligence systems.

Randomized field experiments are the gold standard for evaluating the impact of software changes on customers. In the online domain, randomization has been the main tool to ensure exchangeability. However, due to the different deployment conditions and the high dependence on the surrounding environment, designing experiments for automotive software needs to consider a higher number of restricted variables to ensure conditional exchangeability. In this paper, we show how at Volvo Cars we utilize causal graphical models to design experiments and explicitly communicate the assumptions of experiments. These graphical models are used to further assess the experiment validity, compute direct and indirect causal effects, and reason on the transportability of the causal conclusions.

This paper explores Null Island, a fictional place located at 0$^\circ$ latitude and 0$^\circ$ longitude in the WGS84 geographic coordinate system. Null Island is erroneously associated with large amounts of geographic data in a wide variety of location-based services, place databases, social media and web-based maps. While it was originally considered a joke within the geospatial community, this article will demonstrate implications of its existence, both technological and social in nature, promoting Null Island as a fundamental issue of geographic information that requires more widespread awareness. The article summarizes error sources that lead to data being associated with Null Island. We identify four evolutionary phases which help explain how this fictional place evolved and established itself as an entity reaching beyond the geospatial profession to the point of being discovered by the visual arts and the general population. After providing an accurate account of data that can be found at (0, 0), geospatial, technological and social implications of Null Island are discussed. Guidelines to avoid misplacing data to Null Island are provided. Since data will likely continue to appear at this location, our contribution is aimed at both GIScientists and the general population to promote awareness of this error source.

The security of quantum key distribution (QKD) is severely threatened by discrepancies between realistic devices and theoretical assumptions. Recently, a significant framework called the reference technique was proposed to provide security against arbitrary source flaws, including pulse correlations. Here, we propose an efficient four-phase twin-field QKD using laser pulses adopting the reference technique for security against all possible source imperfections. We present a characterization of source flaws and connect them to experimental data, together with a finite-key analysis. In addition, we demonstrate the feasibility of our protocol through a proof-of-principle experimental implementation and demonstrate a secure key rate of 1.63 kbps with a 20 dB channel loss. Compared with previous QKD protocols with imperfect devices, our work considerably improves both the secure key rate and the transmission distance, and shows application potential in the practical deployment of secure QKD with device imperfections.

I/O efficiency is crucial to productivity in scientific computing, but the increasing complexity of the system and the applications makes it difficult for practitioners to understand and optimize I/O behavior at scale. Data-driven machine learning-based I/O throughput models offer a solution: they can be used to identify bottlenecks, automate I/O tuning, or optimize job scheduling with minimal human intervention. Unfortunately, current state-of-the-art I/O models are not robust enough for production use and underperform after being deployed. We analyze multiple years of application, scheduler, and storage system logs on two leadership-class HPC platforms to understand why I/O models underperform in practice. We propose a taxonomy consisting of five categories of I/O modeling errors: poor application and system modeling, inadequate dataset coverage, I/O contention, and I/O noise. We develop litmus tests to quantify each category, allowing researchers to narrow down failure modes, enhance I/O throughput models, and improve future generations of HPC logging and analysis tools.

With the advent of open source software, a veritable treasure trove of previously proprietary software development data was made available. This opened the field of empirical software engineering research to anyone in academia. Data that is mined from software projects, however, requires extensive processing and needs to be handled with utmost care to ensure valid conclusions. Since the software development practices and tools have changed over two decades, we aim to understand the state-of-the-art research workflows and to highlight potential challenges. We employ a systematic literature review by sampling over one thousand papers from leading conferences and by analyzing the 286 most relevant papers from the perspective of data workflows, methodologies, reproducibility, and tools. We found that an important part of the research workflow involving dataset selection was particularly problematic, which raises questions about the generality of the results in existing literature. Furthermore, we found a considerable number of papers provide little or no reproducibility instructions -- a substantial deficiency for a data-intensive field. In fact, 33% of papers provide no information on how their data was retrieved. Based on these findings, we propose ways to address these shortcomings via existing tools and also provide recommendations to improve research workflows and the reproducibility of research.

Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.

The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.

北京阿比特科技有限公司