亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper explores Null Island, a fictional place located at 0$^\circ$ latitude and 0$^\circ$ longitude in the WGS84 geographic coordinate system. Null Island is erroneously associated with large amounts of geographic data in a wide variety of location-based services, place databases, social media and web-based maps. While it was originally considered a joke within the geospatial community, this article will demonstrate implications of its existence, both technological and social in nature, promoting Null Island as a fundamental issue of geographic information that requires more widespread awareness. The article summarizes error sources that lead to data being associated with Null Island. We identify four evolutionary phases which help explain how this fictional place evolved and established itself as an entity reaching beyond the geospatial profession to the point of being discovered by the visual arts and the general population. After providing an accurate account of data that can be found at (0, 0), geospatial, technological and social implications of Null Island are discussed. Guidelines to avoid misplacing data to Null Island are provided. Since data will likely continue to appear at this location, our contribution is aimed at both GIScientists and the general population to promote awareness of this error source.

相關內容

We introduce a new type of Krasnoselskii's result. Using a simple differentiability condition, we relax the nonexpansive condition in Krasnoselskii's theorem. More clearly, we analyze the convergence of the sequence $x_{n+1}=\frac{x_n+g(x_n)}{2}$ based on some differentiability condition of $g$ and present some fixed point results. We introduce some iterative sequences that for any real differentiable function $g$ and any starting point $x_0\in \mathbb [a,b]$ converge monotonically to the nearest root of $g$ in $[a,b]$ that lay to the right or left side of $x_0$. Based on this approach, we present an efficient and novel method for finding the real roots of real functions. We prove that no root will be missed in our method. It is worth mentioning that our iterative method is free from the derivative evaluation which can be regarded as an advantage of this method in comparison with many other methods. Finally, we illustrate our results with some numerical examples.

We consider the memory system as a key component of any technical cognitive system that can play a central role in bridging the gap between high-level symbolic discrete representations used for reasoning, planning and semantic scene understanding and low-level sensorimotor continuous representations used for control. In this work we described conceptual and technical characteristics such a memory system has to fulfill, together with the underlying data representation. We identify these characteristics based on the experience we gained in developing our ARMAR humanoid robot systems and discuss practical examples that demonstrate what a memory system of a humanoid robot performing tasks in human-centered environments should support, such as multi-modality, introspectability, hetero associativity, predictability or an inherently episodic structure. Based on these characteristics, we extended our robot software framework ArmarX into a unified cognitive architecture that is used in robots of the ARMAR humanoid robot family. Further, we describe, how the development of robot software led us to this novel memory-enabled cognitive architecture and we show how the memory is used by the robots to implement memory-driven behaviors.

The framework of mixed observable Markov decision processes (MOMDP) models many robotic domains in which some state variables are fully observable while others are not. In this work, we identify a significant subclass of MOMDPs defined by how actions influence the fully observable components of the state and how those, in turn, influence the partially observable components and the rewards. This unique property allows for a two-level hierarchical approach we call HIerarchical Reinforcement Learning under Mixed Observability (HILMO), which restricts partial observability to the top level while the bottom level remains fully observable, enabling higher learning efficiency. The top level produces desired goals to be reached by the bottom level until the task is solved. We further develop theoretical guarantees to show that our approach can achieve optimal and quasi-optimal behavior under mild assumptions. Empirical results on long-horizon continuous control tasks demonstrate the efficacy and efficiency of our approach in terms of improved success rate, sample efficiency, and wall-clock training time. We also deploy policies learned in simulation on a real robot.

Evaluation of intervention in a multi-agent system, e.g., when humans should intervene in autonomous driving systems and when a player should pass to teammates for a good shot, is challenging in various engineering and scientific fields. Estimating the individual treatment effect (ITE) using counterfactual long-term prediction is practical to evaluate such interventions. However, most of the conventional frameworks did not consider the time-varying complex structure of multi-agent relationships and covariate counterfactual prediction. This may sometimes lead to erroneous assessments of ITE and interpretation problems. Here we propose an interpretable, counterfactual recurrent network in multi-agent systems to estimate the effect of the intervention. Our model leverages graph variational recurrent neural networks and theory-based computation with domain knowledge for the ITE estimation framework based on long-term prediction of multi-agent covariates and outcomes, which can confirm under the circumstances under which the intervention is effective. On simulated models of an automated vehicle and biological agents with time-varying confounders, we show that our methods achieved lower estimation errors in counterfactual covariates and the most effective treatment timing than the baselines. Furthermore, using real basketball data, our methods performed realistic counterfactual predictions and evaluated the counterfactual passes in shot scenarios.

In applications of remote sensing, estimation, and control, timely communication is not always ensured by high-rate communication. This work proposes distributed age-efficient transmission policies for random access channels with $M$ transmitters. In the first part of this work, we analyze the age performance of stationary randomized policies by relating the problem of finding age to the absorption time of a related Markov chain. In the second part of this work, we propose the notion of \emph{age-gain} of a packet to quantify how much the packet will reduce the instantaneous age of information at the receiver side upon successful delivery. We then utilize this notion to propose a transmission policy in which transmitters act in a distributed manner based on the age-gain of their available packets. In particular, each transmitter sends its latest packet only if its corresponding age-gain is beyond a certain threshold which could be computed adaptively using the collision feedback or found as a fixed value analytically in advance. Both methods improve age of information significantly compared to the state of the art. In the limit of large $M$, we prove that when the arrival rate is small (below $\frac{1}{eM}$), slotted ALOHA-type algorithms are asymptotically optimal. As the arrival rate increases beyond $\frac{1}{eM}$, while age increases under slotted ALOHA, it decreases significantly under the proposed age-based policies. For arrival rates $\theta$, $\theta=\frac{1}{o(M)}$, the proposed algorithms provide a multiplicative factor of at least two compared to the minimum age under slotted ALOHA (minimum over all arrival rates). We conclude that, as opposed to the common practice, it is beneficial to increase the sampling rate (and hence the arrival rate) and transmit packets selectively based on their age-gain.

We present OpenFish: an open source soft robotic fish which is optimized for speed and efficiency. The soft robotic fish uses a combination of an active and passive tail segment to accurately mimic the thunniform swimming mode. Through the implementation of a novel propulsion system that is capable of achieving higher oscillation frequencies with a more sinusoidal waveform, the open source soft robotic fish achieves a top speed of $0.85~\mathrm{m/s}$. Hereby, it outperforms the previously reported fastest soft robotic fish by $27\%$. Besides the propulsion system, the optimization of the fish morphology played a crucial role in achieving this speed. In this work, a detailed description of the design, construction and customization of the soft robotic fish is presented. Hereby, we hope this open source design will accelerate future research and developments in soft robotic fish.

Seismic networks provide data that are used as basis both for public safety decisions and for scientific research. Their configuration affects the data completeness, which in turn, critically affects several seismological scientific targets (e.g., earthquake prediction, seismic hazard...). In this context, a key aspect is how to map earthquakes density in seismogenic areas from censored data or even in areas that are not covered by the network. We propose to predict the spatial distribution of earthquakes from the knowledge of presence locations and geological relationships, taking into account any interaction between records. Namely, in a more general setting, we aim to estimate the intensity function of a point process, conditional to its censored realization, as in geostatistics for continuous processes. We define a predictor as the best linear unbiased combination of the observed point pattern. We show that the weight function associated to the predictor is the solution of a Fredholm equation of second kind. Both the kernel and the source term of the Fredholm equation are related to the first-and second-order characteristics of the point process through the intensity and the pair correlation function. Results are presented and illustrated on simulated non-stationary point processes and real data for mapping Greek Hellenic seismicity in a region with unreliable and incomplete records.

We propose and demonstrate a new approach for fast and accurate surrogate modelling of urban drainage system hydraulics based on physics-guided machine learning. The surrogates are trained against a limited set of simulation results from a hydrodynamic (HiFi) model. Our approach reduces simulation times by one to two orders of magnitude compared to a HiFi model. It is thus slower than e.g. conceptual hydrological models, but it enables simulations of water levels, flows and surcharges in all nodes and links of a drainage network and thus largely preserves the level of detail provided by HiFi models. Comparing time series simulated by the surrogate and the HiFi model, R2 values in the order of 0.9 are achieved. Surrogate training times are currently in the order of one hour. However, they can likely be reduced through the application of transfer learning and graph neural networks. Our surrogate approach will be useful for interactive workshops in initial design phases of urban drainage systems, as well as for real time applications. In addition, our model formulation is generic and future research should investigate its application for simulating other water systems.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

北京阿比特科技有限公司