亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Prompt and accurate detection of system anomalies is essential to ensure the reliability of software systems. Unlike manual efforts that exploit all available run-time information, existing approaches usually leverage only a single type of monitoring data (often logs or metrics) or fail to make effective use of the joint information among multi-source data. Consequently, many false predictions occur. To better understand the manifestations of system anomalies, we conduct a comprehensive empirical study based on a large amount of heterogeneous data, i.e., logs and metrics. Our study demonstrates that system anomalies could manifest distinctly in different data types. Thus, integrating heterogeneous data can help recover the complete picture of a system's health status. In this context, we propose HADES, the first work to effectively identify system anomalies based on heterogeneous data. Our approach employs a hierarchical architecture to learn a global representation of the system status by fusing log semantics and metric patterns. It captures discriminative features and meaningful interactions from multi-modal data via a novel cross-modal attention module, enabling accurate system anomaly detection. We evaluate HADES extensively on large-scale simulated and industrial datasets. The experimental results present the superiority of HADES in detecting system anomalies on heterogeneous data. We release the code and the annotated dataset for reproducibility and future research.

相關內容

Detecting abnormal events in video is commonly framed as a one-class classification task, where training videos contain only normal events, while test videos encompass both normal and abnormal events. In this scenario, anomaly detection is an open-set problem. However, some studies assimilate anomaly detection to action recognition. This is a closed-set scenario that fails to test the capability of systems at detecting new anomaly types. To this end, we propose UBnormal, a new supervised open-set benchmark composed of multiple virtual scenes for video anomaly detection. Unlike existing data sets, we introduce abnormal events annotated at the pixel level at training time, for the first time enabling the use of fully-supervised learning methods for abnormal event detection. To preserve the typical open-set formulation, we make sure to include disjoint sets of anomaly types in our training and test collections of videos. To our knowledge, UBnormal is the first video anomaly detection benchmark to allow a fair head-to-head comparison between one-class open-set models and supervised closed-set models, as shown in our experiments. Moreover, we provide empirical evidence showing that UBnormal can enhance the performance of a state-of-the-art anomaly detection framework on two prominent data sets, Avenue and ShanghaiTech. Our benchmark is freely available at //github.com/lilygeorgescu/UBnormal.

This paper presents the Real-time Adaptive and Interpretable Detection (RAID) algorithm. The novel approach addresses the limitations of state-of-the-art anomaly detection methods for multivariate dynamic processes, which are restricted to detecting anomalies within the scope of the model training conditions. The RAID algorithm adapts to non-stationary effects such as data drift and change points that may not be accounted for during model development, resulting in prolonged service life. A dynamic model based on joint probability distribution handles anomalous behavior detection in a system and the root cause isolation based on adaptive process limits. RAID algorithm does not require changes to existing process automation infrastructures, making it highly deployable across different domains. Two case studies involving real dynamic system data demonstrate the benefits of the RAID algorithm, including change point adaptation, root cause isolation, and improved detection accuracy.

Efficient point cloud representation is a fundamental element of Lidar-based 3D object detection. Recent grid-based detectors usually divide point clouds into voxels or pillars and construct single-stream networks in Bird's Eye View. However, these point cloud encoding paradigms underestimate the point representation in the vertical direction, which cause the loss of semantic or fine-grained information, especially for vertical sensitive objects like pedestrian and cyclists. In this paper, we propose an explicit vertical multi-scale representation learning framework, VPFusion, to combine the complementary information from both voxel and pillar streams. Specifically, VPFusion first builds upon a sparse voxel-pillar-based backbone. The backbone divides point clouds into voxels and pillars, then encodes features with 3D and 2D sparse convolution simultaneously. Next, we introduce the Sparse Fusion Layer (SFL), which establishes a bidirectional pathway for sparse voxel and pillar features to enable the interaction between them. Additionally, we present the Dense Fusion Neck (DFN) to effectively combine the dense feature maps from voxel and pillar branches with multi-scale. Extensive experiments on the large-scale Waymo Open Dataset and nuScenes Dataset demonstrate that VPFusion surpasses the single-stream baselines by a large margin and achieves state-of-the-art performance with real-time inference speed.

Binary code similarity detection (BCSD) is widely used in various binary analysis tasks such as vulnerability search, malware detection, clone detection, and patch analysis. Recent studies have shown that the learning-based binary code embedding models perform better than the traditional feature-based approaches. In this paper, we propose a novel transformer-based binary code embedding model named UniASM to learn representations of the binary functions. We design two new training tasks to make the spatial distribution of the generated vectors more uniform, which can be used directly in BCSD without any fine-tuning. In addition, we present a new tokenization approach for binary functions, which increases the token's semantic information and mitigates the out-of-vocabulary (OOV) problem. We conduct an in-depth analysis of the factors affecting model performance through ablation experiments and obtain some new and valuable findings. The experimental results show that UniASM outperforms the state-of-the-art (SOTA) approach on the evaluation dataset. The average scores of Recall@1 on cross-compilers, cross-optimization levels, and cross-obfuscations are 0.77, 0.72, and 0.72. Besides, in the real-world task of known vulnerability search, UniASM outperforms all the current baselines.

Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.

Since real-world objects and their interactions are often multi-modal and multi-typed, heterogeneous networks have been widely used as a more powerful, realistic, and generic superclass of traditional homogeneous networks (graphs). Meanwhile, representation learning (\aka~embedding) has recently been intensively studied and shown effective for various network mining and analytical tasks. In this work, we aim to provide a unified framework to deeply summarize and evaluate existing research on heterogeneous network embedding (HNE), which includes but goes beyond a normal survey. Since there has already been a broad body of HNE algorithms, as the first contribution of this work, we provide a generic paradigm for the systematic categorization and analysis over the merits of various existing HNE algorithms. Moreover, existing HNE algorithms, though mostly claimed generic, are often evaluated on different datasets. Understandable due to the application favor of HNE, such indirect comparisons largely hinder the proper attribution of improved task performance towards effective data preprocessing and novel technical design, especially considering the various ways possible to construct a heterogeneous network from real-world application data. Therefore, as the second contribution, we create four benchmark datasets with various properties regarding scale, structure, attribute/label availability, and \etc.~from different sources, towards handy and fair evaluations of HNE algorithms. As the third contribution, we carefully refactor and amend the implementations and create friendly interfaces for 13 popular HNE algorithms, and provide all-around comparisons among them over multiple tasks and experimental settings.

The prevalence of networked sensors and actuators in many real-world systems such as smart buildings, factories, power plants, and data centers generate substantial amounts of multivariate time series data for these systems. The rich sensor data can be continuously monitored for intrusion events through anomaly detection. However, conventional threshold-based anomaly detection methods are inadequate due to the dynamic complexities of these systems, while supervised machine learning methods are unable to exploit the large amounts of data due to the lack of labeled data. On the other hand, current unsupervised machine learning approaches have not fully exploited the spatial-temporal correlation and other dependencies amongst the multiple variables (sensors/actuators) in the system for detecting anomalies. In this work, we propose an unsupervised multivariate anomaly detection method based on Generative Adversarial Networks (GANs). Instead of treating each data stream independently, our proposed MAD-GAN framework considers the entire variable set concurrently to capture the latent interactions amongst the variables. We also fully exploit both the generator and discriminator produced by the GAN, using a novel anomaly score called DR-score to detect anomalies by discrimination and reconstruction. We have tested our proposed MAD-GAN using two recent datasets collected from real-world CPS: the Secure Water Treatment (SWaT) and the Water Distribution (WADI) datasets. Our experimental results showed that the proposed MAD-GAN is effective in reporting anomalies caused by various cyber-intrusions compared in these complex real-world systems.

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

We propose the idea of transferring common-sense knowledge from source categories to target categories for scalable object detection. In our setting, the training data for the source categories have bounding box annotations, while those for the target categories only have image-level annotations. Current state-of-the-art approaches focus on image-level visual or semantic similarity to adapt a detector trained on the source categories to the new target categories. In contrast, our key idea is to (i) use similarity not at image-level, but rather at region-level, as well as (ii) leverage richer common-sense (based on attribute, spatial, etc.,) to guide the algorithm towards learning the correct detections. We acquire such common-sense cues automatically from readily-available knowledge bases without any extra human effort. On the challenging MS COCO dataset, we find that using common-sense knowledge substantially improves detection performance over existing transfer-learning baselines.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

北京阿比特科技有限公司