亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Modern longitudinal studies collect feature data at many timepoints, often of the same order of sample size. Such studies are typically affected by {dropout} and positivity violations. We tackle these problems by generalizing effects of recent incremental interventions (which shift propensity scores rather than set treatment values deterministically) to accommodate multiple outcomes and subject dropout. We give an identifying expression for incremental intervention effects when dropout is conditionally ignorable (without requiring treatment positivity), and derive the nonparametric efficiency bound for estimating such effects. Then we present efficient nonparametric estimators, showing that they converge at fast parametric rates and yield uniform inferential guarantees, even when nuisance functions are estimated flexibly at slower rates. We also study the variance ratio of incremental intervention effects relative to more conventional deterministic effects in a novel infinite time horizon setting, where the number of timepoints can grow with sample size, and show that incremental intervention effects yield near-exponential gains in statistical precision in this setup. Finally we conclude with simulations and apply our methods in a study of the effect of low-dose aspirin on pregnancy outcomes.

相關內容

We study automated intrusion prevention using reinforcement learning. Following a novel approach, we formulate the problem of intrusion prevention as an (optimal) multiple stopping problem. This formulation gives us insight into the structure of optimal policies, which we show to have threshold properties. For most practical cases, it is not feasible to obtain an optimal defender policy using dynamic programming. We therefore develop a reinforcement learning approach to approximate an optimal policy. Our method for learning and validating policies includes two systems: a simulation system where defender policies are incrementally learned and an emulation system where statistics are produced that drive simulation runs and where learned policies are evaluated. We show that our approach can produce effective defender policies for a practical IT infrastructure of limited size. Inspection of the learned policies confirms that they exhibit threshold properties.

We consider the problem of finding a compromise between the opinions of a group of individuals on a number of mutually independent, binary topics. In this paper, we quantify the loss in representativeness that results from requiring the outcome to have majority support, in other words, the "price of majority support". Each individual is assumed to support an outcome if they agree with the outcome on at least as many topics as they disagree on. Our results can also be seen as quantifying Anscombes paradox which states that topic-wise majority outcome may not be supported by a majority. To measure the representativeness of an outcome, we consider two metrics. First, we look for an outcome that agrees with a majority on as many topics as possible. We prove that the maximum number such that there is guaranteed to exist an outcome that agrees with a majority on this number of topics and has majority support, equals $\ceil{(t+1)/2}$ where $t$ is the total number of topics. Second, we count the number of times a voter opinion on a topic matches the outcome on that topic. The goal is to find the outcome with majority support with the largest number of matches. We consider the ratio between this number and the number of matches of the overall best outcome which may not have majority support. We try to find the maximum ratio such that an outcome with majority support and this ratio of matches compared to the overall best is guaranteed to exist. For 3 topics, we show this ratio to be $5/6\approx 0.83$. In general, we prove an upper bound that comes arbitrarily close to $2\sqrt{6}-4\approx 0.90$ as $t$ tends to infinity. Furthermore, we numerically compute a better upper and a non-matching lower bound in the relevant range for $t$.

Many causal inference approaches have focused on identifying an individual's outcome change due to a potential treatment, or the individual treatment effect (ITE), from observational studies. Rather than only estimating the ITE, we propose Collaborating Causal Networks (CCN) to estimate the full potential outcome distributions. This modification facilitates estimating the utility of each treatment and allows for individual variation in utility functions (e.g., variability in risk tolerance). We show that CCN learns distributions that asymptotically capture the correct potential outcome distributions under standard causal inference assumptions. Furthermore, we develop a new adjustment approach that is empirically effective in alleviating sample imbalance between treatment groups in observational studies. We evaluate CCN by extensive empirical experiments and demonstrate improved distribution estimates compared to existing Bayesian and Generative Adversarial Network-based methods. Additionally, CCN empirically improves decisions over a variety of utility functions.

Emotions at work have long been identified as critical signals of work motivations, status, and attitudes, and as predictors of various work-related outcomes. When more and more employees work remotely, these emotional signals of workers become harder to observe through daily, face-to-face communications. The use of online platforms to communicate and collaborate at work provides an alternative channel to monitor the emotions of workers. This paper studies how emojis, as non-verbal cues in online communications, can be used for such purposes and how the emotional signals in emoji usage can be used to predict future behavior of workers. In particular, we present how the developers on GitHub use emojis in their work-related activities. We show that developers have diverse patterns of emoji usage, which can be related to their working status including activity levels, types of work, types of communications, time management, and other behavioral patterns. Developers who use emojis in their posts are significantly less likely to dropout from the online work platform. Surprisingly, solely using emoji usage as features, standard machine learning models can predict future dropouts of developers at a satisfactory accuracy. Features related to the general use and the emotions of emojis appear to be important factors, while they do not rule out paths through other purposes of emoji use.

The angular measure on the unit sphere characterizes the first-order dependence structure of the components of a random vector in extreme regions and is defined in terms of standardized margins. Its statistical recovery is an important step in learning problems involving observations far away from the center. In the common situation that the components of the vector have different distributions, the rank transformation offers a convenient and robust way of standardizing data in order to build an empirical version of the angular measure based on the most extreme observations. However, the study of the sampling distribution of the resulting empirical angular measure is challenging. It is the purpose of the paper to establish finite-sample bounds for the maximal deviations between the empirical and true angular measures, uniformly over classes of Borel sets of controlled combinatorial complexity. The bounds are valid with high probability and, up to logarithmic factors, scale as the square root of the effective sample size. The bounds are applied to provide performance guarantees for two statistical learning procedures tailored to extreme regions of the input space and built upon the empirical angular measure: binary classification in extreme regions through empirical risk minimization and unsupervised anomaly detection through minimum-volume sets of the sphere.

How should social scientists understand and communicate the uncertainty of statistically estimated causal effects? It is well-known that the conventional significance-vs.-insignificance approach is associated with misunderstandings and misuses. Behavioral research suggests people understand uncertainty more appropriately in a numerical, continuous scale than in a verbal, discrete scale. Motivated by these backgrounds, I propose presenting the probabilities of different effect sizes. Probability is an intuitive continuous measure of uncertainty. It allows researchers to better understand and communicate the uncertainty of statistically estimated effects. In addition, my approach needs no decision threshold for an uncertainty measure or an effect size, unlike the conventional approaches, allowing researchers to be agnostic about a decision threshold such as p<5% and a justification for that. I apply my approach to a previous social scientific study, showing it enables richer inference than the significance-vs.-insignificance approach taken by the original study. The accompanying R package makes my approach easy to implement.

This paper considers identification and estimation of the causal effect of the time Z until a subject is treated on a survival outcome T. The treatment is not randomly assigned, T is randomly right censored by a random variable C and the time to treatment Z is right censored by min(T,C) The endogeneity issue is treated using an instrumental variable explaining Z and independent of the error term of the model. We study identification in a fully nonparametric framework. We show that our specification generates an integral equation, of which the regression function of interest is a solution. We provide identification conditions that rely on this identification equation. For estimation purposes, we assume that the regression function follows a parametric model. We propose an estimation procedure and give conditions under which the estimator is asymptotically normal. The estimators exhibit good finite sample properties in simulations. Our methodology is applied to find evidence supporting the efficacy of a therapy for burn-out.

The $k$-center problem is to choose a subset of size $k$ from a set of $n$ points such that the maximum distance from each point to its nearest center is minimized. Let $Q=\{Q_1,\ldots,Q_n\}$ be a set of polygons or segments in the region-based uncertainty model, in which each $Q_i$ is an uncertain point, where the exact locations of the points in $Q_i$ are unknown. The geometric objects segments and polygons can be models of a point set. We define the uncertain version of the $k$-center problem as a generalization in which the objective is to find $k$ points from $Q$ to cover the remaining regions of $Q$ with minimum or maximum radius of the cluster to cover at least one or all exact instances of each $Q_i$, respectively. We modify the region-based model to allow multiple points to be chosen from a region and call the resulting model the aggregated uncertainty model. All these problems contain the point version as a special case, so they are all NP-hard with a lower bound 1.822. We give approximation algorithms for uncertain $k$-center of a set of segments and polygons. We also have implemented some of our algorithms on a data-set to show our theoretical performance guarantees can be achieved in practice.

We consider the task of estimating the causal effect of a treatment variable on a long-term outcome variable using data from an observational domain and an experimental domain. The observational data is assumed to be confounded and hence without further assumptions, this dataset alone cannot be used for causal inference. Also, only a short-term version of the primary outcome variable of interest is observed in the experimental data, and hence, this dataset alone cannot be used for causal inference either. In a recent work, Athey et al. (2020) proposed a method for systematically combining such data for identifying the downstream causal effect in view. Their approach is based on the assumptions of internal and external validity of the experimental data, and an extra novel assumption called latent unconfoundedness. In this paper, we first review their proposed approach and discuss the latent unconfoundedness assumption. Then we propose two alternative approaches for data fusion for the purpose of estimating average treatment effect as well as the effect of treatment on the treated. Our first proposed approach is based on assuming equi-confounding bias for the short-term and long-term outcomes. Our second proposed approach is based on the proximal causal inference framework, in which we assume the existence of an extra variable in the system which is a proxy of the latent confounder of the treatment-outcome relation.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

北京阿比特科技有限公司