亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Explainable Artificial Intelligence (XAI) systems aim to improve users' understanding of AI but rarely consider the inclusivity aspects of XAI. Without inclusive approaches, improving explanations might not work well for everyone. This study investigates leveraging users' diverse problem-solving styles as an inclusive strategy to fix an XAI prototype, with the ultimate goal of improving users' mental models of AI. We ran a between-subject study with 69 participants. Our results show that the inclusivity fixes increased participants' engagement with explanations and produced significantly improved mental models. Analyzing differences in mental model scores further highlighted specific inclusivity fixes that contributed to the significant improvement in the mental model.

相關內容

The web contains large-scale, diverse, and abundant information to satisfy the information-seeking needs of humans. Through meticulous data collection, preprocessing, and curation, webpages can be used as a fundamental data resource for language model pretraining. However, when confronted with the progressively revolutionized and intricate nature of webpages, rule-based/feature-based web scrapers are becoming increasingly inadequate. This paper presents a simple, fast, and effective Neural web Scraper (NeuScraper) to help extract primary and clean text contents from webpages. Experimental results show that NeuScraper surpasses the baseline scrapers by achieving more than a 20% improvement, demonstrating its potential in extracting higher-quality data to facilitate the language model pretraining. All of the code is available at //github.com/OpenMatch/NeuScraper.

Residential fixed broadband internet access in the United States (US) has long been distributed inequitably, drawing significant attention from researchers and policymakers. This paper evaluates the efficacy of the Connect America Fund (CAF), a key policy intervention aimed at addressing disparities in US internet access. CAF subsidizes the creation of new regulated broadband monopolies in underserved areas, aiming to provide comparable internet access, in terms of price and speed, to that available in urban regions. Oversight of CAF largely relies on data self-reported by internet service providers (ISPs), which is often questionable. We use the broadband-plan querying tool (BQT) to curate a novel dataset that complements ISP-reported information with ISP-advertised broadband plan details (download speed and monthly cost) on publicly accessible websites. Specifically, we query advertised broadband plans for 687k residential addresses across 15 states, certified as served by ISPs to regulators. Our analysis reveals significant discrepancies between ISP-reported data and actual broadband availability. We find that the serviceability rate-defined as the fraction of addresses ISPs actively serve out of the total queried, weighted by the number of CAF addresses in a census block group-is only 55%, dropping to as low as 18% in some states. Additionally, the compliance rate-defined as the weighted fraction of addresses where ISPs actively serve and advertise download speeds above the FCC's 10 Mbps threshold-is only 33%. We also observe that in a subset of census blocks, CAF-funded addresses receive higher broadband speeds than their monopoly-served neighbors. These results indicate that while a few users have benefited from this multi-billion dollar program, it has largely failed to achieve its intended goal, leaving many targeted rural communities with inadequate or no broadband connectivity.

Previous work has demonstrated that, in the Variance Preserving (VP) scenario, the nascent Directly Denoising Diffusion Models (DDDM) can generate high-quality images in one step while achieving even better performance in multistep sampling. However, the Pseudo-LPIPS loss used in DDDM leads to concerns about the bias in assessment. Here, we propose a unified DDDM (uDDDM) framework that generates images in one-step/multiple steps for both Variance Preserving (VP) and Variance Exploding (VE) cases. We provide theoretical proofs of the existence and uniqueness of the model's solution paths, as well as the non-intersecting property of the sampling paths. Additionally, we propose an adaptive Pseudo-Huber loss function to balance the convergence to the true solution and the stability of convergence process.Through a comprehensive evaluation, we demonstrate that uDDDMs achieve FID scores comparable to the best-performing methods available for CIFAR-10 in both VP and VE. Specifically, uDDDM achieves one-step generation on CIFAR10 with FID of 2.63 and 2.53 for VE and VP respectively. By extending the sampling to 1000 steps, we further reduce FID score to 1.71 and 1.65 for VE and VP respectively, setting state-of-the-art performance in both cases.

In the realm of Artificial Intelligence (AI), the importance of Explainable Artificial Intelligence (XAI) is increasingly recognized, particularly as AI models become more integral to our lives. One notable single-instance XAI approach is counterfactual explanation, which aids users in comprehending a model's decisions and offers guidance on altering these decisions. Specifically in the context of image classification models, effective image counterfactual explanations can significantly enhance user understanding. This paper introduces a novel method for computing feature importance within the feature space of a black-box model. By employing information fusion techniques, our method maximizes the use of data to address feature counterfactual explanations in the feature space. Subsequently, we utilize an image generation model to transform these feature counterfactual explanations into image counterfactual explanations. Our experiments demonstrate that the counterfactual explanations generated by our method closely resemble the original images in both pixel and feature spaces. Additionally, our method outperforms established baselines, achieving impressive experimental results.

AI legal assistants based on Large Language Models (LLMs) can provide accessible legal consulting services, but the hallucination problem poses potential legal risks. This paper presents Chatlaw, an innovative legal assistant utilizing a Mixture-of-Experts (MoE) model and a multi-agent system to enhance the reliability and accuracy of AI-driven legal services. By integrating knowledge graphs with artificial screening, we construct a high-quality legal dataset to train the MoE model. This model utilizes different experts to address various legal issues, optimizing the accuracy of legal responses. Additionally, Standardized Operating Procedures (SOP), modeled after real law firm workflows, significantly reduce errors and hallucinations in legal services. Our MoE model outperforms GPT-4 in the Lawbench and Unified Qualification Exam for Legal Professionals by 7.73% in accuracy and 11 points, respectively, and also surpasses other models in multiple dimensions during real-case consultations, demonstrating our robust capability for legal consultation.

Symbolic Aggregate approXimation (SAX) is a common dimensionality reduction approach for time-series data which has been employed in a variety of domains, including classification and anomaly detection in time-series data. Domains also include shape recognition where the shape outline is converted into time-series data forinstance epoch classification of archived arrowheads. In this paper we propose a dimensionality reduction and shape recognition approach based on the SAX algorithm, an application which requires responses on cost efficient, IoT-like, platforms. The challenge is largely dealing with the computational expense of the SAX algorithm in IoT-like applications, from simple time-series dimension reduction through shape recognition. The approach is based on lowering the dimensional space while capturing and preserving the most representative features of the shape. We present three scenarios of increasing computational complexity backing up our statements with measurement of performance characteristics

The advancement of large language models (LLMs) has propelled the development of dialogue systems. Unlike the popular ChatGPT-like assistant model, which only satisfies the user's preferences, task-oriented dialogue systems have also faced new requirements and challenges in the broader business field. They are expected to provide correct responses at each dialogue turn, at the same time, achieve the overall goal defined by the task. By understanding rhetorical structures and topic structures via topic segmentation and discourse parsing, a dialogue system may do a better planning to achieve both objectives. However, while both structures belong to discourse structure in linguistics, rhetorical structure and topic structure are mostly modeled separately or with one assisting the other in the prior work. The interaction between these two structures has not been considered for joint modeling and mutual learning. Furthermore, unsupervised learning techniques to achieve the above are not well explored. To fill this gap, we propose an unsupervised mutual learning framework of two structures leveraging the global and local connections between them. We extend the topic modeling between non-adjacent discourse units to ensure global structural relevance with rhetorical structures. We also incorporate rhetorical structures into the topic structure through a graph neural network model to ensure local coherence consistency. Finally, we utilize the similarity between the two fused structures for mutual learning. The experimental results demonstrate that our methods outperform all strong baselines on two dialogue rhetorical datasets (STAC and Molweni), as well as dialogue topic datasets (Doc2Dial and TIAGE).

Spiking Neural Networks (SNNs) have attracted great attention for their energy-efficient operations and biologically inspired structures, offering potential advantages over Artificial Neural Networks (ANNs) in terms of energy efficiency and interpretability. Nonetheless, similar to ANNs, the robustness of SNNs remains a challenge, especially when facing adversarial attacks. Existing techniques, whether adapted from ANNs or specifically designed for SNNs, exhibit limitations in training SNNs or defending against strong attacks. In this paper, we propose a novel approach to enhance the robustness of SNNs through gradient sparsity regularization. We observe that SNNs exhibit greater resilience to random perturbations compared to adversarial perturbations, even at larger scales. Motivated by this, we aim to narrow the gap between SNNs under adversarial and random perturbations, thereby improving their overall robustness. To achieve this, we theoretically prove that this performance gap is upper bounded by the gradient sparsity of the probability associated with the true label concerning the input image, laying the groundwork for a practical strategy to train robust SNNs by regularizing the gradient sparsity. We validate the effectiveness of our approach through extensive experiments on both image-based and event-based datasets. The results demonstrate notable improvements in the robustness of SNNs. Our work highlights the importance of gradient sparsity in SNNs and its role in enhancing robustness.

Sequential recommendation aims to leverage users' historical behaviors to predict their next interaction. Existing works have not yet addressed two main challenges in sequential recommendation. First, user behaviors in their rich historical sequences are often implicit and noisy preference signals, they cannot sufficiently reflect users' actual preferences. In addition, users' dynamic preferences often change rapidly over time, and hence it is difficult to capture user patterns in their historical sequences. In this work, we propose a graph neural network model called SURGE (short for SeqUential Recommendation with Graph neural nEtworks) to address these two issues. Specifically, SURGE integrates different types of preferences in long-term user behaviors into clusters in the graph by re-constructing loose item sequences into tight item-item interest graphs based on metric learning. This helps explicitly distinguish users' core interests, by forming dense clusters in the interest graph. Then, we perform cluster-aware and query-aware graph convolutional propagation and graph pooling on the constructed graph. It dynamically fuses and extracts users' current activated core interests from noisy user behavior sequences. We conduct extensive experiments on both public and proprietary industrial datasets. Experimental results demonstrate significant performance gains of our proposed method compared to state-of-the-art methods. Further studies on sequence length confirm that our method can model long behavioral sequences effectively and efficiently.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司