We construct quantum algorithms to compute the solution and/or physical observables of nonlinear ordinary differential equations (ODEs) and nonlinear Hamilton-Jacobi equations (HJE) via linear representations or exact mappings between nonlinear ODEs/HJE and linear partial differential equations (the Liouville equation and the Koopman-von Neumann equation). The connection between the linear representations and the original nonlinear system is established through the Dirac delta function or the level set mechanism. We compare the quantum linear systems algorithms based methods and the quantum simulation methods arising from different numerical approximations, including the finite difference discretisations and the Fourier spectral discretisations for the two different linear representations, with the result showing that the quantum simulation methods usually give the best performance in time complexity. We also propose the Schr\"odinger framework to solve the Liouville equation for the HJE with the Hamiltonian formulation of classical mechanics, since it can be recast as the semiclassical limit of the Wigner transform of the Schr\"odinger equation. Comparsion between the Schr\"odinger and the Liouville framework will also be made.
This paper concerns an expansion of first-order Belnap-Dunn logic which is called $\mathrm{BD}^{\supset,\mathsf{F}}$. Its connectives and quantifiers are all familiar from classical logic and its logical consequence relation is very closely connected to the one of classical logic. Results that convey this close connection are established. Fifteen classical laws of logical equivalence are used to distinguish $\mathrm{BD}^{\supset,\mathsf{F}}$ from all other four-valued logics with the same connectives and quantifiers whose logical consequence relation is as closely connected to the logical consequence relation of classical logic. It is shown that several interesting non-classical connectives added to Belnap-Dunn logic in its expansions that have been studied earlier are definable in $\mathrm{BD}^{\supset,\mathsf{F}}$. It is also established that $\mathrm{BD}^{\supset,\mathsf{F}}$ is both paraconsistent and paracomplete. Moreover, a sequent calculus proof system that is sound and complete with respect to the logical consequence relation of $\mathrm{BD}^{\supset,\mathsf{F}}$ is presented.
The aim of this work is to present a model reduction technique in the framework of optimal control problems for partial differential equations. We combine two approaches used for reducing the computational cost of the mathematical numerical models: domain-decomposition (DD) methods and reduced-order modelling (ROM). In particular, we consider an optimisation-based domain-decomposition algorithm for the parameter-dependent stationary incompressible Navier-Stokes equations. Firstly, the problem is described on the subdomains coupled at the interface and solved through an optimal control problem, which leads to the complete separation of the subdomain problems in the DD method. On top of that, a reduced model for the obtained optimal-control problem is built; the procedure is based on the Proper Orthogonal Decomposition technique and a further Galerkin projection. The presented methodology is tested on two fluid dynamics benchmarks: the stationary backward-facing step and lid-driven cavity flow. The numerical tests show a significant reduction of the computational costs in terms of both the problem dimensions and the number of optimisation iterations in the domain-decomposition algorithm.
We prove lower bounds for the randomized approximation of the embedding $\ell_1^m \rightarrow \ell_\infty^m$ based on algorithms that use arbitrary linear (hence non-adaptive) information provided by a (randomized) measurement matrix $N \in \mathbb{R}^{n \times m}$. These lower bounds reflect the increasing difficulty of the problem for $m \to \infty$, namely, a term $\sqrt{\log m}$ in the complexity $n$. This result implies that non-compact operators between arbitrary Banach spaces are not approximable using non-adaptive Monte Carlo methods. We also compare these lower bounds for non-adaptive methods with upper bounds based on adaptive, randomized methods for recovery for which the complexity $n$ only exhibits a $(\log\log m)$-dependence. In doing so we give an example of linear problems where the error for adaptive vs. non-adaptive Monte Carlo methods shows a gap of order $n^{1/2} ( \log n)^{-1/2}$.
The EM algorithm is a popular tool for maximum likelihood estimation but has not been used much for high-dimensional regularization problems in linear mixed-effects models. In this paper, we introduce the EMLMLasso algorithm, which combines the EM algorithm and the popular and efficient R package glmnet for Lasso variable selection of fixed effects in linear mixed-effects models. We compare the performance of our proposed EMLMLasso algorithm with the one implemented in the well-known R package glmmLasso through the analyses of both simulated and real-world applications. The simulations and applications demonstrated good properties, such as consistency, and the effectiveness of the proposed variable selection procedure, for both $p < n$ and $p > n$. Moreover, in all evaluated scenarios, the EMLMLasso algorithm outperformed glmmLasso. The proposed method is quite general and can be easily extended for ridge and elastic net penalties in linear mixed-effects models.
The paper aims to study the performance of the amplitude-based model \newline $\widehat{\mathbf x} \in argmin{{\mathbf x}\in \mathbb{C}^d}\sum_{j=1}^m\left(|\langle {\mathbf a}_j,{\mathbf x}\rangle|-b_j\right)^2$, where $b_j:=|\langle {\mathbf a}_j,{\mathbf x}_0\rangle|+\eta_j$ and ${\mathbf x}_0\in \mathbb{C}^d$ is a target signal. The model is raised in phase retrieval as well as in absolute value rectification neural networks. Many efficient algorithms have been developed to solve it in the past decades. {However, there are very few results available regarding the estimation performance in the complex case under noisy conditions.} In this paper, {we present a theoretical guarantee on the amplitude-based model for the noisy complex phase retrieval problem}. Specifically, we show that $\min_{\theta\in[0,2\pi)}\|\widehat{\mathbf x}-\exp(\mathrm{i}\theta)\cdot{\mathbf x}_0\|_2 \lesssim \frac{\|{\mathbf \eta}\|_2}{\sqrt{m}}$ holds with high probability provided the measurement vectors ${\mathbf a}_j\in \mathbb{C}^d,$ $j=1,\ldots,m,$ are {i.i.d.} complex sub-Gaussian random vectors and $m\gtrsim d$. Here ${\mathbf \eta}=(\eta_1,\ldots,\eta_m)\in \mathbb{R}^m$ is the noise vector without any assumption on the distribution. Furthermore, we prove that the reconstruction error is sharp. For the case where the target signal ${\mathbf x}_0\in \mathbb{C}^{d}$ is sparse, we establish a similar result for the nonlinear constrained $\ell_1$ minimization model. { To accomplish this, we leverage a strong version of restricted isometry property for an operator on the space of simultaneous low-rank and sparse matrices.}
We propose a new discrete choice model, called the generalized stochastic preference (GSP) model, that incorporates non-rationality into the stochastic preference (SP) choice model, also known as the rank- based choice model. Our model can explain several choice phenomena that cannot be represented by any SP model such as the compromise and attraction effects, but still subsumes the SP model class. The GSP model is defined as a distribution over consumer types, where each type extends the choice behavior of rational types in the SP model. We build on existing methods for estimating the SP model and propose an iterative estimation algorithm for the GSP model that finds new types by solving a integer linear program in each iteration. We further show that our proposed notion of non-rationality can be incorporated into other choice models, like the random utility maximization (RUM) model class as well as any of its subclasses. As a concrete example, we introduce the non-rational extension of the classical MNL model, which we term the generalized MNL (GMNL) model and present an efficient expectation-maximization (EM) algorithm for estimating the GMNL model. Numerical evaluation on real choice data shows that the GMNL and GSP models can outperform their rational counterparts in out-of-sample prediction accuracy.
We first introduce a general class of transport distances ${\rm WB}_{\Lambda}$ over the space of positive semi-definite matrix-valued Radon measures $\mathcal{M}(\Omega,\mathbb{S}_+^n)$, called the weighted Wasserstein-Bures distance. Such a distance is defined via a generalized Benamou-Brenier formulation with a weighted action functional and an abstract matricial continuity equation, which leads to a convex optimization problem. Some recently proposed models, including the Kantorovich-Bures distance and the Wasserstein-Fisher-Rao distance, can naturally fit into ours. We give a complete characterization of the minimizer and explore the topological and geometrical properties of the space $(\mathcal{M}(\Omega,\mathbb{S}_+^n),{\rm WB}_{\Lambda})$. In particular, we show that $(\mathcal{M}(\Omega,\mathbb{S}_+^n),{\rm WB}_{\Lambda})$ is a complete geodesic space and exhibits a conic structure. We further investigate the convergence property of the associated discrete transport problem. We present a convergence framework for abstract discretization and then propose a concrete convergent discretization scheme.
We provide a framework for the numerical approximation of distributed optimal control problems, based on least-squares finite element methods. Our proposed method simultaneously solves the state and adjoint equations and is $\inf$--$\sup$ stable for any choice of conforming discretization spaces. A reliable and efficient a posteriori error estimator is derived for problems where box constraints are imposed on the control. It can be localized and therefore used to steer an adaptive algorithm. For unconstrained optimal control problems, i.e., the set of controls being a Hilbert space, we obtain a coercive least-squares method and, in particular, quasi-optimality for any choice of discrete approximation space. For constrained problems we derive and analyze a variational inequality where the PDE part is tackled by least-squares finite element methods. We show that the abstract framework can be applied to a wide range of problems, including scalar second-order PDEs, the Stokes problem, and parabolic problems on space-time domains. Numerical examples for some selected problems are presented.
High-dimensional Partial Differential Equations (PDEs) are a popular mathematical modelling tool, with applications ranging from finance to computational chemistry. However, standard numerical techniques for solving these PDEs are typically affected by the curse of dimensionality. In this work, we tackle this challenge while focusing on stationary diffusion equations defined over a high-dimensional domain with periodic boundary conditions. Inspired by recent progress in sparse function approximation in high dimensions, we propose a new method called compressive Fourier collocation. Combining ideas from compressive sensing and spectral collocation, our method replaces the use of structured collocation grids with Monte Carlo sampling and employs sparse recovery techniques, such as orthogonal matching pursuit and $\ell^1$ minimization, to approximate the Fourier coefficients of the PDE solution. We conduct a rigorous theoretical analysis showing that the approximation error of the proposed method is comparable with the best $s$-term approximation (with respect to the Fourier basis) to the solution. Using the recently introduced framework of random sampling in bounded Riesz systems, our analysis shows that the compressive Fourier collocation method mitigates the curse of dimensionality with respect to the number of collocation points under sufficient conditions on the regularity of the diffusion coefficient. We also present numerical experiments that illustrate the accuracy and stability of the method for the approximation of sparse and compressible solutions.
Developing an efficient computational scheme for high-dimensional Bayesian variable selection in generalised linear models and survival models has always been a challenging problem due to the absence of closed-form solutions for the marginal likelihood. The RJMCMC approach can be employed to samples model and coefficients jointly, but effective design of the transdimensional jumps of RJMCMC can be challenge, making it hard to implement. Alternatively, the marginal likelihood can be derived using data-augmentation scheme e.g. Polya-gamma data argumentation for logistic regression) or through other estimation methods. However, suitable data-augmentation schemes are not available for every generalised linear and survival models, and using estimations such as Laplace approximation or correlated pseudo-marginal to derive marginal likelihood within a locally informed proposal can be computationally expensive in the "large n, large p" settings. In this paper, three main contributions are presented. Firstly, we present an extended Point-wise implementation of Adaptive Random Neighbourhood Informed proposal (PARNI) to efficiently sample models directly from the marginal posterior distribution in both generalised linear models and survival models. Secondly, in the light of the approximate Laplace approximation, we also describe an efficient and accurate estimation method for the marginal likelihood which involves adaptive parameters. Additionally, we describe a new method to adapt the algorithmic tuning parameters of the PARNI proposal by replacing the Rao-Blackwellised estimates with the combination of a warm-start estimate and an ergodic average. We present numerous numerical results from simulated data and 8 high-dimensional gene fine mapping data-sets to showcase the efficiency of the novel PARNI proposal compared to the baseline add-delete-swap proposal.