亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In robotic manipulation, end-effector compliance is an essential precondition for performing contact-rich tasks, such as machining, assembly, and human-robot interaction. Most robotic arms are position-controlled stiff systems at a hardware level. Thus, adding compliance becomes essential. Compliance in those systems has been recently achieved using Forward dynamics compliance control (FDCC), which, owing to its virtual forward dynamics model, can be implemented on both position and velocity-controlled robots. This paper evaluates the choice of control interface (and hence the control domain), which, although considered trivial, is essential due to differences in their characteristics. In some cases, the choice is restricted to the available hardware interface. However, given the option to choose, the velocity-based control interface makes a better candidate for compliance control because of smoother compliant behaviour, reduced interaction forces, and work done. To prove these points, in this paper FDCC is evaluated on the UR10e six-DOF manipulator with velocity and position control modes. The evaluation is based on force-control benchmarking metrics using 3D-printed artefacts. Real experiments favour the choice of velocity control over position control.

相關內容

Due to the linearity of quantum mechanics, it remains a challenge to design quantum generative machine learning models that embed non-linear activations into the evolution of the statevector. However, some of the most successful classical generative models, such as those based on neural networks, involve highly non-linear dynamics for quality training. In this paper, we explore the effect of these dynamics in quantum generative modeling by introducing a model that adds non-linear activations via a neural network structure onto the standard Born Machine framework - the Quantum Neuron Born Machine (QNBM). To achieve this, we utilize a previously introduced Quantum Neuron subroutine, which is a repeat-until-success circuit with mid-circuit measurements and classical control. After introducing the QNBM, we investigate how its performance depends on network size, by training a 3-layer QNBM with 4 output neurons and various input and hidden layer sizes. We then compare our non-linear QNBM to the linear Quantum Circuit Born Machine (QCBM). We allocate similar time and memory resources to each model, such that the only major difference is the qubit overhead required by the QNBM. With gradient-based training, we show that while both models can easily learn a trivial uniform probability distribution, on a more challenging class of distributions, the QNBM achieves an almost 3x smaller error rate than a QCBM with a similar number of tunable parameters. We therefore provide evidence that suggests that non-linearity is a useful resource in quantum generative models, and we put forth the QNBM as a new model with good generative performance and potential for quantum advantage.

Intelligent agents have great potential as facilitators of group conversation among older adults. However, little is known about how to design agents for this purpose and user group, especially in terms of agent embodiment. To this end, we conducted a mixed methods study of older adults' reactions to voice and body in a group conversation facilitation agent. Two agent forms with the same underlying artificial intelligence (AI) and voice system were compared: a humanoid robot and a voice assistant. One preliminary study (total n=24) and one experimental study comparing voice and body morphologies (n=36) were conducted with older adults and an experienced human facilitator. Findings revealed that the artificiality of the agent, regardless of its form, was beneficial for the socially uncomfortable task of conversation facilitation. Even so, talkative personality types had a poorer experience with the "bodied" robot version. Design implications and supplementary reactions, especially to agent voice, are also discussed.

Based on the principle of onion routing, the Tor network achieves anonymity for its users by relaying user data over a series of intermediate relays. This approach makes congestion control in the network a challenging task. As of today, this results in higher latencies due to considerable backlog as well as unfair data rate allocation. In this paper, we present a concept study of PredicTor, a novel approach to congestion control that tackles clogged overlay networks. Unlike traditional approaches, it is built upon the idea of distributed model predictive control, a recent advancement from the area of control theory. PredicTor is tailored to minimizing latency in the network and achieving max-min fairness. We contribute a thorough evaluation of its behavior in both toy scenarios to assess the optimizer and complex networks to assess its potential. For this, we conduct large-scale simulation studies and compare PredicTor to existing congestion control mechanisms in Tor. We show that PredicTor is highly effective in reducing latency and realizing fair rate allocations. In addition, we strive to bring the ideas of modern control theory to the networking community, enabling the development of improved, future congestion control. We therefore demonstrate benefits and issues alike with this novel research direction.

Searching for a path between two nodes in a graph is one of the most well-studied and fundamental problems in computer science. In numerous domains such as robotics, AI, or biology, practitioners develop search heuristics to accelerate their pathfinding algorithms. However, it is a laborious and complex process to hand-design heuristics based on the problem and the structure of a given use case. Here we present PHIL (Path Heuristic with Imitation Learning), a novel neural architecture and a training algorithm for discovering graph search and navigation heuristics from data by leveraging recent advances in imitation learning and graph representation learning. At training time, we aggregate datasets of search trajectories and ground-truth shortest path distances, which we use to train a specialized graph neural network-based heuristic function using backpropagation through steps of the pathfinding process. Our heuristic function learns graph embeddings useful for inferring node distances, runs in constant time independent of graph sizes, and can be easily incorporated in an algorithm such as A* at test time. Experiments show that PHIL reduces the number of explored nodes compared to state-of-the-art methods on benchmark datasets by 58.5\% on average, can be directly applied in diverse graphs ranging from biological networks to road networks, and allows for fast planning in time-critical robotics domains.

In unstructured environments, robots run the risk of unexpected collisions. How well they react to these events is determined by how transparent they are to collisions. Transparency is affected by structural properties as well as sensing and control architectures. In this paper, we propose the collision reflex metric as a way to formally quantify transparency. It is defined as the total impulse transferred in collision, which determines the collision mitigation capabilities of a closed-loop robotic system taking into account structure, sensing, and control. We analyze the effect of motor scaling, stiffness, and configuration on the collision reflex of a system using an analytical model. Physical experiments using the move-until-touch behavior are conducted to compare the collision reflex of direct-drive and quasi-direct-drive actuators and robotic hands (Schunk WSG-50 and Dexterous DDHand.) For transparent systems, we see a counter-intuitive trend: the impulse may be lower at higher pre-impact velocities.

Legged robot locomotion is a challenging task due to a myriad of sub-problems, such as the hybrid dynamics of foot contact and the effects of the desired gait on the terrain. Accurate and efficient state estimation of the floating base and the feet joints can help alleviate much of these issues by providing feedback information to robot controllers. Current state estimation methods are highly reliant on a conjunction of visual and inertial measurements to provide real-time estimates, thus being handicapped in perceptually poor environments. In this work, we show that by leveraging the kinematic chain model of the robot via a factor graph formulation, we can perform state estimation of the base and the leg joints using primarily proprioceptive inertial data. We perform state estimation using a combination of preintegrated IMU measurements, forward kinematic computations, and contact detections in a factor-graph based framework, allowing our state estimate to be constrained by the robot model. Experimental results in simulation and on hardware show that our approach out-performs current proprioceptive state estimation methods by 27% on average, while being generalizable to a variety of legged robot platforms. We demonstrate our results both quantitatively and qualitatively on a wide variety of trajectories.

This work aims at showing that it is feasible and safe to use a swarm of Unmanned Aerial Vehicles (UAVs) indoors alongside humans. UAVs are increasingly being integrated under the Industry 4.0 framework. UAV swarms are primarily deployed outdoors in civil and military applications, but the opportunities for using them in manufacturing and supply chain management are immense. There is extensive research on UAV technology, e.g., localization, control, and computer vision, but less research on the practical application of UAVs in industry. UAV technology could improve data collection and monitoring, enhance decision-making in an Internet of Things framework and automate time-consuming and redundant tasks in the industry. However, there is a gap between the technological developments of UAVs and their integration into the supply chain. Therefore, this work focuses on automating the task of transporting packages utilizing a swarm of small UAVs operating alongside humans. MoCap system, ROS, and unity are used for localization, inter-process communication and visualization. Multiple experiments are performed with the UAVs in wander and swarm mode in a warehouse like environment.

Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.

Autonomous driving has achieved a significant milestone in research and development over the last decade. There is increasing interest in the field as the deployment of self-operating vehicles on roads promises safer and more ecologically friendly transportation systems. With the rise of computationally powerful artificial intelligence (AI) techniques, autonomous vehicles can sense their environment with high precision, make safe real-time decisions, and operate more reliably without human interventions. However, intelligent decision-making in autonomous cars is not generally understandable by humans in the current state of the art, and such deficiency hinders this technology from being socially acceptable. Hence, aside from making safe real-time decisions, the AI systems of autonomous vehicles also need to explain how these decisions are constructed in order to be regulatory compliant across many jurisdictions. Our study sheds a comprehensive light on developing explainable artificial intelligence (XAI) approaches for autonomous vehicles. In particular, we make the following contributions. First, we provide a thorough overview of the present gaps with respect to explanations in the state-of-the-art autonomous vehicle industry. We then show the taxonomy of explanations and explanation receivers in this field. Thirdly, we propose a framework for an architecture of end-to-end autonomous driving systems and justify the role of XAI in both debugging and regulating such systems. Finally, as future research directions, we provide a field guide on XAI approaches for autonomous driving that can improve operational safety and transparency towards achieving public approval by regulators, manufacturers, and all engaged stakeholders.

Classic machine learning methods are built on the $i.i.d.$ assumption that training and testing data are independent and identically distributed. However, in real scenarios, the $i.i.d.$ assumption can hardly be satisfied, rendering the sharp drop of classic machine learning algorithms' performances under distributional shifts, which indicates the significance of investigating the Out-of-Distribution generalization problem. Out-of-Distribution (OOD) generalization problem addresses the challenging setting where the testing distribution is unknown and different from the training. This paper serves as the first effort to systematically and comprehensively discuss the OOD generalization problem, from the definition, methodology, evaluation to the implications and future directions. Firstly, we provide the formal definition of the OOD generalization problem. Secondly, existing methods are categorized into three parts based on their positions in the whole learning pipeline, namely unsupervised representation learning, supervised model learning and optimization, and typical methods for each category are discussed in detail. We then demonstrate the theoretical connections of different categories, and introduce the commonly used datasets and evaluation metrics. Finally, we summarize the whole literature and raise some future directions for OOD generalization problem. The summary of OOD generalization methods reviewed in this survey can be found at //out-of-distribution-generalization.com.

北京阿比特科技有限公司