亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The activation functions are fundamental to neural networks as they introduce non-linearity into data relationships, thereby enabling deep networks to approximate complex data relations. Existing efforts to enhance neural network performance have predominantly focused on developing new mathematical functions. However, we find that a well-designed combination of existing activation functions within a neural network can also achieve this objective. In this paper, we introduce the Combined Units activation (CombU), which employs different activation functions at various dimensions across different layers. This approach can be theoretically proven to fit most mathematical expressions accurately. The experiments conducted on four mathematical expression datasets, compared against six State-Of-The-Art (SOTA) activation function algorithms, demonstrate that CombU outperforms all SOTA algorithms in 10 out of 16 metrics and ranks in the top three for the remaining six metrics.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Statistical methods have been widely misused and misinterpreted in various scientific fields, raising significant concerns about the integrity of scientific research. To mitigate this problem, we propose a new method for formally specifying and automatically verifying the correctness of statistical programs. In this method, programmers are required to annotate the source code of the statistical programs with the requirements for these methods. Through this annotation, they are reminded to check the requirements for statistical methods, including those that cannot be formally verified, such as the distribution of the unknown true population. Our software tool StatWhy automatically checks whether programmers have properly specified the requirements for the statistical methods, thereby identifying any missing requirements that need to be addressed. This tool is implemented using the Why3 platform to verify the correctness of OCaml programs that conduct statistical hypothesis testing. We demonstrate how StatWhy can be used to avoid common errors in various popular statistical hypothesis testing programs.

The rise of mobile devices equipped with numerous sensors, such as LiDAR and cameras, has spurred the adoption of multi-modal deep intelligence for distributed sensing tasks, such as smart cabins and driving assistance. However, the arrival times of mobile sensory data vary due to modality size and network dynamics, which can lead to delays (if waiting for slower data) or accuracy decline (if inference proceeds without waiting). Moreover, the diversity and dynamic nature of mobile systems exacerbate this challenge. In response, we present a shift to \textit{opportunistic} inference for asynchronous distributed multi-modal data, enabling inference as soon as partial data arrives. While existing methods focus on optimizing modality consistency and complementarity, known as modal affinity, they lack a \textit{computational} approach to control this affinity in open-world mobile environments. AdaFlow pioneers the formulation of structured cross-modality affinity in mobile contexts using a hierarchical analysis-based normalized matrix. This approach accommodates the diversity and dynamics of modalities, generalizing across different types and numbers of inputs. Employing an affinity attention-based conditional GAN (ACGAN), AdaFlow facilitates flexible data imputation, adapting to various modalities and downstream tasks without retraining. Experiments show that AdaFlow significantly reduces inference latency by up to 79.9\% and enhances accuracy by up to 61.9\%, outperforming status quo approaches.

Effective governance and steering of behavior in complex multi-agent systems (MAS) are essential for managing system-wide outcomes, particularly in environments where interactions are structured by dynamic networks. In many applications, the goal is to promote pro-social behavior among agents, where network structure plays a pivotal role in shaping these interactions. This paper introduces a Hierarchical Graph Reinforcement Learning (HGRL) framework that governs such systems through targeted interventions in the network structure. Operating within the constraints of limited managerial authority, the HGRL framework demonstrates superior performance across a range of environmental conditions, outperforming established baseline methods. Our findings highlight the critical influence of agent-to-agent learning (social learning) on system behavior: under low social learning, the HGRL manager preserves cooperation, forming robust core-periphery networks dominated by cooperators. In contrast, high social learning accelerates defection, leading to sparser, chain-like networks. Additionally, the study underscores the importance of the system manager's authority level in preventing system-wide failures, such as agent rebellion or collapse, positioning HGRL as a powerful tool for dynamic network-based governance.

Thanks to the great interest posed by researchers and companies, recommendation systems became a cornerstone of machine learning applications. However, concerns have arisen recently about the need for reproducibility, making it challenging to identify suitable pipelines. Several frameworks have been proposed to improve reproducibility, covering the entire process from data reading to performance evaluation. Despite this effort, these solutions often overlook the role of data management, do not promote interoperability, and neglect data analysis despite its well-known impact on recommender performance. To address these gaps, we propose DataRec, which facilitates using and manipulating recommendation datasets. DataRec supports reading and writing in various formats, offers filtering and splitting techniques, and enables data distribution analysis using well-known metrics. It encourages a unified approach to data manipulation by allowing data export in formats compatible with several recommendation frameworks.

Continuous-time trajectory representation has gained significant popularity in recent years, as it offers an elegant formulation that allows the fusion of a larger number of sensors and sensing modalities, overcoming limitations of traditional discrete-time frameworks. To bolster the adoption of the continuous-time paradigm, we propose a so-called Gaussian Process Trajectory Representation (GPTR) framework for continuous-time motion estimation (CTME) tasks. Our approach stands out by employing a third-order random jerk model, featuring closed-form expressions for both rotational and translational state derivatives. This model provides smooth, continuous trajectory representations that are crucial for precise estimation of complex motion. To support the wider robotics and computer vision communities, we have made the source code for GPTR available as a light-weight header-only library. This format was chosen for its ease of integration, allowing developers to incorporate GPTR into existing systems without needing extensive code modifications. Moreover, we also provide a set of optimization examples with LiDAR, camera, IMU, UWB factors, and closed-form analytical Jacobians under the proposed GP framework. Our experiments demonstrate the efficacy and efficiency of GP-based trajectory representation in various motion estimation tasks, and the examples can serve as the prototype to help researchers quickly develop future applications such as batch optimization, calibration, sensor fusion, trajectory planning, etc., with continuous-time trajectory representation. Our project is accessible at //github.com/brytsknguyen/gptr .

Emerging interconnects, such as CXL and NVLink, have been integrated into the intra-host topology to scale more accelerators and facilitate efficient communication between them, such as GPUs. To keep pace with the accelerator's growing computing throughput, the interconnect has seen substantial enhancement in link bandwidth, e.g., 256GBps for CXL 3.0 links, which surpasses Ethernet and InfiniBand network links by an order of magnitude or more. Consequently, when data-intensive jobs, such as LLM training, scale across multiple hosts beyond the reach limit of the interconnect, the performance is significantly hindered by the limiting bandwidth of the network infrastructure. We address the problem by proposing DFabric, a two-tier interconnect architecture. We address the problem by proposing DFabric, a two-tier interconnect architecture. First, DFabric disaggregates rack's computing units with an interconnect fabric, i.e., CXL fabric, which scales at rack-level, so that they can enjoy intra-rack efficient interconnecting. Second, DFabric disaggregates NICs from hosts, and consolidates them to form a NIC pool with CXL fabric. By providing sufficient aggregated capacity comparable to interconnect bandwidth, the NIC pool bridges efficient communication across racks or beyond the reach limit of interconnect fabric. However, the local memory accessing becomes the bottleneck when enabling each host to utilize the NIC pool efficiently. To the end, DFabric builds a memory pool with sufficient bandwidth by disaggregating host local memory and adding more memory devices. We have implemented a prototype of DFabric that can run applications transparently. We validated its performance gain by running various microbenchmarks and compute-intensive applications such as DNN and graph.

The scarcity of high-quality and multi-task singing datasets significantly hinders the development of diverse controllable and personalized singing tasks, as existing singing datasets suffer from low quality, limited diversity of languages and singers, absence of multi-technique information and realistic music scores, and poor task suitability. To tackle these problems, we present GTSinger, a large global, multi-technique, free-to-use, high-quality singing corpus with realistic music scores, designed for all singing tasks, along with its benchmarks. Particularly, (1) we collect 80.59 hours of high-quality singing voices, forming the largest recorded singing dataset; (2) 20 professional singers across nine widely spoken languages offer diverse timbres and styles; (3) we provide controlled comparison and phoneme-level annotations of six commonly used singing techniques, helping technique modeling and control; (4) GTSinger offers realistic music scores, assisting real-world musical composition; (5) singing voices are accompanied by manual phoneme-to-audio alignments, global style labels, and 16.16 hours of paired speech for various singing tasks. Moreover, to facilitate the use of GTSinger, we conduct four benchmark experiments: technique-controllable singing voice synthesis, technique recognition, style transfer, and speech-to-singing conversion. The corpus and demos can be found at //gtsinger.github.io. We provide the dataset and the code for processing data and conducting benchmarks at //huggingface.co/datasets/GTSinger/GTSinger and //github.com/GTSinger/GTSinger.

In the field of Human-Computer Interaction (HCI), interactive devices with embedded mechanical computation are gaining attention. The rise of these cutting-edge devices has created a need for specialized design tools that democratize the prototyping process. While current tools streamline prototyping through parametric design and simulation, they often come with a steep learning curve and may not fully support creative ideation. In this study, we use fluidic computation interfaces as a case study to explore how design tools for such devices can be augmented by Large Language Model agents (LLMs). Integrated with LLMs, the Generative Design Tool (GDT) better understands the capabilities and limitations of new technologies, proposes diverse and practical applications, and suggests designs that are technically and contextually appropriate. Additionally, it generates design parameters for visualizing results and producing fabrication-ready support files. This paper details the GDT's framework, implementation, and performance while addressing its potential and challenges.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.

北京阿比特科技有限公司