亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Structural causal models (SCMs), also known as (nonparametric) structural equation models (SEMs), are widely used for causal modeling purposes. In particular, acyclic SCMs, also known as recursive SEMs, form a well-studied subclass of SCMs that generalize causal Bayesian networks to allow for latent confounders. In this paper, we investigate SCMs in a more general setting, allowing for the presence of both latent confounders and cycles. We show that in the presence of cycles, many of the convenient properties of acyclic SCMs do not hold in general: they do not always have a solution; they do not always induce unique observational, interventional and counterfactual distributions; a marginalization does not always exist, and if it exists the marginal model does not always respect the latent projection; they do not always satisfy a Markov property; and their graphs are not always consistent with their causal semantics. We prove that for SCMs in general each of these properties does hold under certain solvability conditions. Our work generalizes results for SCMs with cycles that were only known for certain special cases so far. We introduce the class of simple SCMs that extends the class of acyclic SCMs to the cyclic setting, while preserving many of the convenient properties of acyclic SCMs. With this paper we aim to provide the foundations for a general theory of statistical causal modeling with SCMs.

相關內容

Bayesian models based on the Dirichlet process and other stick-breaking priors have been proposed as core ingredients for clustering, topic modeling, and other unsupervised learning tasks. However, due to the flexibility of these models, the consequences of prior choices can be opaque. And so prior specification can be relatively difficult. At the same time, prior choice can have a substantial effect on posterior inferences. Thus, considerations of robustness need to go hand in hand with nonparametric modeling. In the current paper, we tackle this challenge by exploiting the fact that variational Bayesian methods, in addition to having computational advantages in fitting complex nonparametric models, also yield sensitivities with respect to parametric and nonparametric aspects of Bayesian models. In particular, we demonstrate how to assess the sensitivity of conclusions to the choice of concentration parameter and stick-breaking distribution for inferences under Dirichlet process mixtures and related mixture models. We provide both theoretical and empirical support for our variational approach to Bayesian sensitivity analysis.

A Bayesian multivariate model with a structured covariance matrix for multi-way nested data is proposed. This flexible modeling framework allows for positive and for negative associations among clustered observations, and generalizes the well-known dependence structure implied by random effects. A conjugate shifted-inverse gamma prior is proposed for the covariance parameters which ensures that the covariance matrix remains positive definite under posterior analysis. A numerically efficient Gibbs sampling procedure is defined for balanced nested designs, and is validated using two simulation studies. For a top-layer unbalanced nested design, the procedure requires an additional data augmentation step. The proposed data augmentation procedure facilitates sampling latent variables from (truncated) univariate normal distributions, and avoids numerical computation of the inverse of the structured covariance matrix. The Bayesian multivariate (linear transformation) model is applied to two-way nested interval-censored event times to analyze differences in adverse events between three groups of patients, who were randomly allocated to treatment with different stents (BIO-RESORT). The parameters of the structured covariance matrix represent unobserved heterogeneity in treatment effects and are examined to detect differential treatment effects.

Our motivation stems from current medical research aiming at personalized treatment using a molecular-based approach. The broad goal is to develop a more precise and targeted decision making process, relative to traditional treatments based primarily on clinical diagnoses. Specifically, we consider patients affected by Acute Myeloid Leukemia (AML), an hematological cancer characterized by uncontrolled proliferation of hematopoietic stem cells in the bone marrow. Because AML responds poorly to chemoterapeutic treatments, the development of targeted therapies is essential to improve patients' prospects. In particular, the dataset we analyze contains the levels of proteins involved in cell cycle regulation and linked to the progression of the disease. We analyse treatment effects within a causal framework represented by a Directed Acyclic Graph (DAG) model, whose vertices are the protein levels in the network. A major obstacle in implementing the above program is however represented by individual heterogeneity. We address this issue through a Dirichlet Process (DP) mixture of Gaussian DAG-models where both the graphical structure as well as the allied model parameters are regarded as uncertain. Our procedure determines a clustering structure of the units reflecting the underlying heterogeneity, and produces subject-specific estimates of causal effects based on Bayesian model averaging. With reference to the AML dataset, we identify different effects of protein regulation among individuals; moreover, our method clusters patients into groups that exhibit only mild similarities with traditional categories based on morphological features.

Using deep latent variable models in causal inference has attracted considerable interest recently, but an essential open question is their ability to yield consistent causal estimates. While they have demonstrated promising results and theory exists on some simple model formulations, we also know that causal effects are not even identifiable in general with latent variables. We investigate this gap between theory and empirical results with analytical considerations and extensive experiments under multiple synthetic and real-world data sets, using the causal effect variational autoencoder (CEVAE) as a case study. While CEVAE seems to work reliably under some simple scenarios, it does not estimate the causal effect correctly with a misspecified latent variable or a complex data distribution, as opposed to its original motivation. Hence, our results show that more attention should be paid to ensuring the correctness of causal estimates with deep latent variable models.

Data collected from wearable devices and smartphones can shed light on an individual's patterns of behavior and circadian routine. Phone use can be modeled as alternating between the state of active use and the state of being idle. Markov chains and alternating recurrent event models are commonly used to model state transitions in cases such as these, and the incorporation of random effects can be used to introduce time-of-day effects. While state labels can be derived prior to modeling dynamics, this approach omits informative regression covariates that can influence state memberships. We instead propose a recurrent event proportional hazards (PH) regression to model the transitions between latent states. We propose an Expectation-Maximization (EM) algorithm for imputing latent state labels and estimating regression parameters. We show that our E-step simplifies to the hidden Markov model (HMM) forward-backward algorithm, allowing us to recover a HMM in addition to PH models. We derive asymptotic distributions for our model parameter estimates and compare our approach against competing methods through simulation as well as in a digital phenotyping study that followed smartphone use in a cohort of adolescents with mood disorders.

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

Learning disentanglement aims at finding a low dimensional representation which consists of multiple explanatory and generative factors of the observational data. The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations. However, in real scenarios, factors with semantics are not necessarily independent. Instead, there might be an underlying causal structure which renders these factors dependent. We thus propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent exogenous factors into causal endogenous ones that correspond to causally related concepts in data. We further analyze the model identifiabitily, showing that the proposed model learned from observations recovers the true one up to a certain degree. Experiments are conducted on various datasets, including synthetic and real word benchmark CelebA. Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy. Furthermore, we demonstrate that the proposed CausalVAE model is able to generate counterfactual data through "do-operation" to the causal factors.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

The aim of this paper is to offer the first systematic exploration and definition of equivalent causal models in the context where both models are not made up of the same variables. The idea is that two models are equivalent when they agree on all "essential" causal information that can be expressed using their common variables. I do so by focussing on the two main features of causal models, namely their structural relations and their functional relations. In particular, I define several relations of causal ancestry and several relations of causal sufficiency, and require that the most general of these relations are preserved across equivalent models.

Discrete random structures are important tools in Bayesian nonparametrics and the resulting models have proven effective in density estimation, clustering, topic modeling and prediction, among others. In this paper, we consider nested processes and study the dependence structures they induce. Dependence ranges between homogeneity, corresponding to full exchangeability, and maximum heterogeneity, corresponding to (unconditional) independence across samples. The popular nested Dirichlet process is shown to degenerate to the fully exchangeable case when there are ties across samples at the observed or latent level. To overcome this drawback, inherent to nesting general discrete random measures, we introduce a novel class of latent nested processes. These are obtained by adding common and group-specific completely random measures and, then, normalising to yield dependent random probability measures. We provide results on the partition distributions induced by latent nested processes, and develop an Markov Chain Monte Carlo sampler for Bayesian inferences. A test for distributional homogeneity across groups is obtained as a by product. The results and their inferential implications are showcased on synthetic and real data.

北京阿比特科技有限公司