In [3] it was shown that four seemingly different algorithms for computing low-rank approximate solutions $X_j$ to the solution $X$ of large-scale continuous-time algebraic Riccati equations (CAREs) $0 = \mathcal{R}(X) := A^HX+XA+C^HC-XBB^HX $ generate the same sequence $X_j$ when used with the same parameters. The Hermitian low-rank approximations $X_j$ are of the form $X_j = Z_jY_jZ_j^H,$ where $Z_j$ is a matrix with only few columns and $Y_j$ is a small square Hermitian matrix. Each $X_j$ generates a low-rank Riccati residual $\mathcal{R}(X_j)$ such that the norm of the residual can be evaluated easily allowing for an efficient termination criterion. Here a new family of methods to generate such low-rank approximate solutions $X_j$ of CAREs is proposed. Each member of this family of algorithms proposed here generates the same sequence of $X_j$ as the four previously known algorithms. The approach is based on a block rational Arnoldi decomposition and an associated block rational Krylov subspace spanned by $A^H$ and $C^H.$ Two specific versions of the general algorithm will be considered; one will turn out to be a rediscovery of the RADI algorithm, the other one allows for a slightly more efficient implementation compared to the RADI algorithm (in case the Sherman-Morrision-Woodbury formula and a direct solver is used to solve the linear systems that occur). Moreover, our approach allows for adding more than one shift at a time.
Adaptiveness is a key principle in information processing including statistics and machine learning. We investigate the usefulness of adaptive methods in the framework of asymptotic binary hypothesis testing, when each hypothesis represents asymptotically many independent instances of a quantum channel, and the tests are based on using the unknown channel and observing outputs. Unlike the familiar setting of quantum states as hypotheses, there is a fundamental distinction between adaptive and non-adaptive strategies with respect to the channel uses, and we introduce a number of further variants of the discrimination tasks by imposing different restrictions on the test strategies. The following results are obtained: (1) We prove that for classical-quantum channels, adaptive and non-adaptive strategies lead to the same error exponents both in the symmetric (Chernoff) and asymmetric (Hoeffding, Stein) settings. (2) The first separation between adaptive and non-adaptive symmetric hypothesis testing exponents for quantum channels, which we derive from a general lower bound on the error probability for non-adaptive strategies; the concrete example we analyze is a pair of entanglement-breaking channels. (3)We prove, in some sense generalizing the previous statement, that for general channels adaptive strategies restricted to classical feed-forward and product state channel inputs are not superior in the asymptotic limit to non-adaptive product state strategies. (4) As an application of our findings, we address the discrimination power of an arbitrary quantum channel and show that adaptive strategies with classical feedback and no quantum memory at the input do not increase the discrimination power of the channel beyond non-adaptive tensor product input strategies.
We show that for log-concave real random variables with fixed variance the Shannon differential entropy is minimized for an exponential random variable. We apply this result to derive upper bounds on capacities of additive noise channels with log-concave noise. We also improve constants in the reverse entropy power inequalities for log-concave random variables.
We give generators and relations for the hypergraph props of Gaussian relations and positive affine Lagrangian relations. The former extends Gaussian probabilistic processes by completely-uninformative priors, and the latter extends Gaussian quantum mechanics with infinitely-squeezed states. These presentations are given by adding a generator to the presentation of real affine relations and of real affine Lagrangian relations which freely codiscards effects, as well as certain rotations. The presentation of positive affine Lagrangian relations provides a rigorous justification for many common yet informal calculations in the quantum physics literature involving infinite-squeezing. Our presentation naturally extends Menicucci et al.'s graph-theoretic representation of Gaussian quantum states with a representation for Gaussian transformations. We interpret the LOv-calculus, a diagrammatic calculus for reasoning about passive linear-optical quantum circuits in our presentation of positive affine Lagrangian relations. Moreover, we show how our presentation allows for additional optical operations such as active squeezing.
Quantum computing has emerged as a promising avenue for achieving significant speedup, particularly in large-scale PDE simulations, compared to classical computing. One of the main quantum approaches involves utilizing Hamiltonian simulation, which is directly applicable only to Schr\"odinger-type equations. To address this limitation, Schr\"odingerisation techniques have been developed, employing the warped transformation to convert general linear PDEs into Schr\"odinger-type equations. However, despite the development of Schr\"odingerisation techniques, the explicit implementation of the corresponding quantum circuit for solving general PDEs remains to be designed. In this paper, we present detailed implementation of a quantum algorithm for general PDEs using Schr\"odingerisation techniques. We provide examples of the heat equation, and the advection equation approximated by the upwind scheme, to demonstrate the effectiveness of our approach. Complexity analysis is also carried out to demonstrate the quantum advantages of these algorithms in high dimensions over their classical counterparts.
The $\mathrm{Caus}[-]$ construction takes a base category of ``raw materials'' and builds a category of higher order causal processes, that is a category whose types encode causal (a.k.a. signalling) constraints between collections of systems. Notable examples are categories of higher-order stochastic maps and higher-order quantum channels. Well-typedness in $\mathrm{Caus}[-]$ corresponds to a composition of processes being causally consistent, in the sense that any choice of local processes of the prescribed types yields an overall process respecting causality constraints. It follows that closed processes always occur with probability 1, ruling out e.g. causal paradoxes arising from time loops. It has previously been shown that $\mathrm{Caus}[\mathcal{C}]$ gives a model of MLL+MIX and BV logic, hence these logics give sufficient conditions for causal consistency, but they fail to provide a complete characterisation. In this follow-on work, we introduce graph types as a tool to examine causal structures over graphs in this model. We explore their properties, standard forms, and equivalent definitions; in particular, a process obeys all signalling constraints of the graph iff it is expressible as an affine combination of factorisations into local causal processes connected according to the edges of the graph. The properties of graph types are then used to prove completeness for causal consistency of a new causal logic that conservatively extends pomset logic. The crucial extra ingredient is a notion of distinguished atoms that correspond to first-order states, which only admit a flow of information in one direction. Using the fact that causal logic conservatively extends pomset logic, we finish by giving a physically-meaningful interpretation to a separating statement between pomset and BV.
It is known from the monograph [1, Chapter 5] that the weak convergence analysis of numerical schemes for stochastic Maxwell equations is an unsolved problem. This paper aims to fill the gap by establishing the long-time weak convergence analysis of the semi-implicit Euler scheme for stochastic Maxwell equations. Based on analyzing the regularity of transformed Kolmogorov equation associated to stochastic Maxwell equations and constructing a proper continuous adapted auxiliary process for the semi-implicit scheme, we present the long-time weak convergence analysis for this scheme and prove that the weak convergence order is one, which is twice the strong convergence order. As applications of this result, we obtain the convergence order of the numerical invariant measure, the strong law of large numbers and central limit theorem related to the numerical solution, and the error estimate of the multi-level Monte Carlo estimator. As far as we know, this is the first result on the weak convergence order for stochastic Maxwell equations.
In logistic regression modeling, Firth's modified estimator is widely used to address the issue of data separation, which results in the nonexistence of the maximum likelihood estimate. Firth's modified estimator can be formulated as a penalized maximum likelihood estimator in which Jeffreys' prior is adopted as the penalty term. Despite its widespread use in practice, the formal verification of the corresponding estimate's existence has not been established. In this study, we establish the existence theorem of Firth's modified estimate in binomial logistic regression models, assuming only the full column rankness of the design matrix. We also discuss other binomial regression models obtained through alternating link functions and prove the existence of similar penalized maximum likelihood estimates for such models.
Confidence intervals based on the central limit theorem (CLT) are a cornerstone of classical statistics. Despite being only asymptotically valid, they are ubiquitous because they permit statistical inference under weak assumptions and can often be applied to problems even when nonasymptotic inference is impossible. This paper introduces time-uniform analogues of such asymptotic confidence intervals, adding to the literature on confidence sequences (CS) -- sequences of confidence intervals that are uniformly valid over time -- which provide valid inference at arbitrary stopping times and incur no penalties for "peeking" at the data, unlike classical confidence intervals which require the sample size to be fixed in advance. Existing CSs in the literature are nonasymptotic, enjoying finite-sample guarantees but not the aforementioned broad applicability of asymptotic confidence intervals. This work provides a definition for "asymptotic CSs" and a general recipe for deriving them. Asymptotic CSs forgo nonasymptotic validity for CLT-like versatility and (asymptotic) time-uniform guarantees. While the CLT approximates the distribution of a sample average by that of a Gaussian for a fixed sample size, we use strong invariance principles (stemming from the seminal 1960s work of Strassen) to uniformly approximate the entire sample average process by an implicit Gaussian process. As an illustration, we derive asymptotic CSs for the average treatment effect in observational studies (for which nonasymptotic bounds are essentially impossible to derive even in the fixed-time regime) as well as randomized experiments, enabling causal inference in sequential environments.
The non-linear collision-induced breakage equation has significant applications in particulate processes. Two semi-analytical techniques, namely homotopy analysis method (HAM) and accelerated homotopy perturbation method (AHPM) are investigated along with the well-known finite volume method (FVM) to comprehend the dynamical behavior of the non-linear system, i.e., the concentration function, the total number and the total mass of the particles in the system. The theoretical convergence analyses of the series solutions of HAM and AHPM are discussed. In addition, the error estimations of the truncated solutions of both methods equip the maximum absolute error bound. To justify the applicability and accuracy of these methods, numerical simulations are compared with the findings of FVM and analytical solutions considering three physical problems.
Existing schemes for demonstrating quantum computational advantage are subject to various practical restrictions, including the hardness of verification and challenges in experimental implementation. Meanwhile, analog quantum simulators have been realized in many experiments to study novel physics. In this work, we propose a quantum advantage protocol based on single-step Feynman-Kitaev verification of an analog quantum simulation, in which the verifier need only run an $O(\lambda^2)$-time classical computation, and the prover need only prepare $O(1)$ samples of a history state and perform $O(\lambda^2)$ single-qubit measurements, for a security parameter $\lambda$. We also propose a near-term feasible strategy for honest provers and discuss potential experimental realizations.