Designing effective positional encodings for graphs is key to building powerful graph transformers and enhancing message-passing graph neural networks. Although widespread, using Laplacian eigenvectors as positional encodings faces two fundamental challenges: (1) \emph{Non-uniqueness}: there are many different eigendecompositions of the same Laplacian, and (2) \emph{Instability}: small perturbations to the Laplacian could result in completely different eigenspaces, leading to unpredictable changes in positional encoding. Despite many attempts to address non-uniqueness, most methods overlook stability, leading to poor generalization on unseen graph structures. We identify the cause of instability to be a "hard partition" of eigenspaces. Hence, we introduce Stable and Expressive Positional Encodings (SPE), an architecture for processing eigenvectors that uses eigenvalues to "softly partition" eigenspaces. SPE is the first architecture that is (1) provably stable, and (2) universally expressive for basis invariant functions whilst respecting all symmetries of eigenvectors. Besides guaranteed stability, we prove that SPE is at least as expressive as existing methods, and highly capable of counting graph structures. Finally, we evaluate the effectiveness of our method on molecular property prediction, and out-of-distribution generalization tasks, finding improved generalization compared to existing positional encoding methods.
Object detection models, a prominent class of machine learning algorithms, aim to identify and precisely locate objects in images or videos. However, this task might yield uneven performances sometimes caused by the objects sizes and the quality of the images and labels used for training. In this paper, we highlight the importance of large objects in learning features that are critical for all sizes. Given these findings, we propose to introduce a weighting term into the training loss. This term is a function of the object area size. We show that giving more weight to large objects leads to improved detection scores across all object sizes and so an overall improvement in Object Detectors performances (+2 p.p. of mAP on small objects, +2 p.p. on medium and +4 p.p. on large on COCO val 2017 with InternImage-T). Additional experiments and ablation studies with different models and on a different dataset further confirm the robustness of our findings.
Developing computational models of neural response is crucial for understanding sensory processing and neural computations. Current state-of-the-art neural network methods use temporal filters to handle temporal dependencies, resulting in an unrealistic and inflexible processing paradigm. Meanwhile, these methods target trial-averaged firing rates and fail to capture important features in spike trains. This work presents the temporal conditioning spiking latent variable models (TeCoS-LVM) to simulate the neural response to natural visual stimuli. We use spiking neurons to produce spike outputs that directly match the recorded trains. This approach helps to avoid losing information embedded in the original spike trains. We exclude the temporal dimension from the model parameter space and introduce a temporal conditioning operation to allow the model to adaptively explore and exploit temporal dependencies in stimuli sequences in a {\it natural paradigm}. We show that TeCoS-LVM models can produce more realistic spike activities and accurately fit spike statistics than powerful alternatives. Additionally, learned TeCoS-LVM models can generalize well to longer time scales. Overall, while remaining computationally tractable, our model effectively captures key features of neural coding systems. It thus provides a useful tool for building accurate predictive computational accounts for various sensory perception circuits.
This paper considers the graph signal processing problem of anomaly detection in time series of graphs. We examine two related, complementary inference tasks: the detection of anomalous graphs within a time series, and the detection of temporally anomalous vertices. We approach these tasks via the adaptation of statistically principled methods for joint graph inference, specifically \emph{multiple adjacency spectral embedding} (MASE). We demonstrate that our method is effective for our inference tasks. Moreover, we assess the performance of our method in terms of the underlying nature of detectable anomalies. We further provide the theoretical justification for our method and insight into its use. Applied to the Enron communication graph and a large-scale commercial search engine time series of graphs, our approaches demonstrate their applicability and identify the anomalous vertices beyond just large degree change.
Process mining discovers and analyzes a process model from historical event logs. The prior art methods use the key attributes of case-id, activity, and timestamp hidden in an event log as clues to discover a process model. However, a user needs to specify them manually, and this can be an exhaustive task. In this paper, we propose a two-stage key attribute identification method to avoid such a manual investigation, and thus this is a step toward fully automated process discovery. One of the challenging tasks is how to avoid exhaustive computation due to combinatorial explosion. For this, we narrow down candidates for each key attribute by using supervised machine learning in the first stage and identify the best combination of the key attributes by discovering process models and evaluating them in the second stage. Our computational complexity can be reduced from $\mathcal{O}(N^3)$ to $\mathcal{O}(k^3)$ where $N$ and $k$ are the numbers of columns and candidates we keep in the first stage, respectively, and usually $k$ is much smaller than $N$. We evaluated our method with 14 open datasets and showed that our method could identify the key attributes even with $k = 2$ for about 20 seconds for many datasets.
The effective assessment of the instruction-following ability of large language models (LLMs) is of paramount importance. A model that cannot adhere to human instructions might be not able to provide reliable and helpful responses. In pursuit of this goal, various benchmarks have been constructed to evaluate the instruction-following capacity of these models. However, these benchmarks are limited to a single language and are constructed using automated approaches, which restricts their applicability and the quality of the test examples they contain. To bridge this gap, we introduce the FollowEval benchmark in this paper. This benchmark is composed of instances in both English and Chinese, and all test examples are crafted by human experts. Furthermore, the FollowEval benchmark is designed to assess LLMs across five critical dimensions of instruction following: string manipulation, commonsense reasoning, logical reasoning, spatial reasoning, and response constraints. To enhance the complexity and present a sufficient challenge, each test example is designed to evaluate more than one dimension. We have evaluated various LLMs using the FollowEval benchmark and found that their performance significantly lags behind that of humans. This highlights the considerable room for improvement in the instruction-following ability of these models.
Automated audio captioning (AAC), a task that mimics human perception as well as innovatively links audio processing and natural language processing, has overseen much progress over the last few years. AAC requires recognizing contents such as the environment, sound events and the temporal relationships between sound events and describing these elements with a fluent sentence. Currently, an encoder-decoder-based deep learning framework is the standard approach to tackle this problem. Plenty of works have proposed novel network architectures and training schemes, including extra guidance, reinforcement learning, audio-text self-supervised learning and diverse or controllable captioning. Effective data augmentation techniques, especially based on large language models are explored. Benchmark datasets and AAC-oriented evaluation metrics also accelerate the improvement of this field. This paper situates itself as a comprehensive survey covering the comparison between AAC and its related tasks, the existing deep learning techniques, datasets, and the evaluation metrics in AAC, with insights provided to guide potential future research directions.
Automatic text-based diacritic restoration models generally have high diacritic error rates when applied to speech transcripts as a result of domain and style shifts in spoken language. In this work, we explore the possibility of improving the performance of automatic diacritic restoration when applied to speech data by utilizing the parallel spoken utterances. In particular, we use the pre-trained Whisper ASR model fine-tuned on relatively small amounts of diacritized Arabic speech data to produce rough diacritized transcripts for the speech utterances, which we then use as an additional input for a transformer-based diacritic restoration model. The proposed model consistently improve diacritic restoration performance compared to an equivalent text-only model, with at least 5\% absolute reduction in diacritic error rate within the same domain and on two out-of-domain test sets. Our results underscore the inadequacy of current text-based diacritic restoration models for speech data sets and provide a new baseline for speech-based diacritic restoration.
Object detection is a fundamental task in computer vision and image processing. Current deep learning based object detectors have been highly successful with abundant labeled data. But in real life, it is not guaranteed that each object category has enough labeled samples for training. These large object detectors are easy to overfit when the training data is limited. Therefore, it is necessary to introduce few-shot learning and zero-shot learning into object detection, which can be named low-shot object detection together. Low-Shot Object Detection (LSOD) aims to detect objects from a few or even zero labeled data, which can be categorized into few-shot object detection (FSOD) and zero-shot object detection (ZSD), respectively. This paper conducts a comprehensive survey for deep learning based FSOD and ZSD. First, this survey classifies methods for FSOD and ZSD into different categories and discusses the pros and cons of them. Second, this survey reviews dataset settings and evaluation metrics for FSOD and ZSD, then analyzes the performance of different methods on these benchmarks. Finally, this survey discusses future challenges and promising directions for FSOD and ZSD.
Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.
Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.