亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Process mining discovers and analyzes a process model from historical event logs. The prior art methods use the key attributes of case-id, activity, and timestamp hidden in an event log as clues to discover a process model. However, a user needs to specify them manually, and this can be an exhaustive task. In this paper, we propose a two-stage key attribute identification method to avoid such a manual investigation, and thus this is a step toward fully automated process discovery. One of the challenging tasks is how to avoid exhaustive computation due to combinatorial explosion. For this, we narrow down candidates for each key attribute by using supervised machine learning in the first stage and identify the best combination of the key attributes by discovering process models and evaluating them in the second stage. Our computational complexity can be reduced from $\mathcal{O}(N^3)$ to $\mathcal{O}(k^3)$ where $N$ and $k$ are the numbers of columns and candidates we keep in the first stage, respectively, and usually $k$ is much smaller than $N$. We evaluated our method with 14 open datasets and showed that our method could identify the key attributes even with $k = 2$ for about 20 seconds for many datasets.

相關內容

Node repair is a crucial problem in erasure-code-based distributed storage systems. An important metric for repair efficiency is the I/O cost which equals the total amount of data accessed at helper nodes to repair a failed node. In this work, a general formula for computing the I/O cost of linear repair schemes is derived from a new perspective, i.e., by investigating the Hamming weight of a related linear space. Applying the formula to Reed-Solomon (RS) codes, we obtain lower bounds on the I/O cost for full-length RS codes with two and three parities. Furthermore, we build linear repair schemes for the RS codes with improved I/O cost. For full-length RS codes with two parities, our scheme meets the lower bound on the I/O cost.

Establishing evaluation schemes for spoken dialogue systems is important, but it can also be challenging. While subjective evaluations are commonly used in user experiments, objective evaluations are necessary for research comparison and reproducibility. To address this issue, we propose a framework for indirectly but objectively evaluating systems based on users' behaviours. In this paper, to this end, we investigate the relationship between user behaviours and subjective evaluation scores in social dialogue tasks: attentive listening, job interview, and first-meeting conversation. The results reveal that in dialogue tasks where user utterances are primary, such as attentive listening and job interview, indicators like the number of utterances and words play a significant role in evaluation. Observing disfluency also can indicate the effectiveness of formal tasks, such as job interview. On the other hand, in dialogue tasks with high interactivity, such as first-meeting conversation, behaviours related to turn-taking, like average switch pause length, become more important. These findings suggest that selecting appropriate user behaviours can provide valuable insights for objective evaluation in each social dialogue task.

Our study assesses the adversarial robustness of LiDAR-camera fusion models in 3D object detection. We introduce an attack technique that, by simply adding a limited number of physically constrained adversarial points above a car, can make the car undetectable by the fusion model. Experimental results reveal that even without changes to the image data channel, the fusion model can be deceived solely by manipulating the LiDAR data channel. This finding raises safety concerns in the field of autonomous driving. Further, we explore how the quantity of adversarial points, the distance between the front-near car and the LiDAR-equipped car, and various angular factors affect the attack success rate. We believe our research can contribute to the understanding of multi-sensor robustness, offering insights and guidance to enhance the safety of autonomous driving.

We introduce DiffSketch, a method for generating a variety of stylized sketches from images. Our approach focuses on selecting representative features from the rich semantics of deep features within a pretrained diffusion model. This novel sketch generation method can be trained with one manual drawing. Furthermore, efficient sketch extraction is ensured by distilling a trained generator into a streamlined extractor. We select denoising diffusion features through analysis and integrate these selected features with VAE features to produce sketches. Additionally, we propose a sampling scheme for training models using a conditional generative approach. Through a series of comparisons, we verify that distilled DiffSketch not only outperforms existing state-of-the-art sketch extraction methods but also surpasses diffusion-based stylization methods in the task of extracting sketches.

The commercialization of diffusion models, renowned for their ability to generate high-quality images that are often indistinguishable from real ones, brings forth potential copyright concerns. Although attempts have been made to impede unauthorized access to copyrighted material during training and to subsequently prevent DMs from generating copyrighted images, the effectiveness of these solutions remains unverified. This study explores the vulnerabilities associated with copyright protection in DMs by introducing a backdoor data poisoning attack (SilentBadDiffusion) against text-to-image diffusion models. Our attack method operates without requiring access to or control over the diffusion model's training or fine-tuning processes; it merely involves the insertion of poisoning data into the clean training dataset. This data, comprising poisoning images equipped with prompts, is generated by leveraging the powerful capabilities of multimodal large language models and text-guided image inpainting techniques. Our experimental results and analysis confirm the method's effectiveness. By integrating a minor portion of non-copyright-infringing stealthy poisoning data into the clean dataset-rendering it free from suspicion-we can prompt the finetuned diffusion models to produce copyrighted content when activated by specific trigger prompts. These findings underline potential pitfalls in the prevailing copyright protection strategies and underscore the necessity for increased scrutiny and preventative measures against the misuse of DMs.

Studying the response of a climate system to perturbations has practical significance. Standard methods in computing the trajectory-wise deviation caused by perturbations may suffer from the chaotic nature that makes the model error dominate the true response after a short lead time. Statistical response, which computes the return described by the statistics, provides a systematic way of reaching robust outcomes with an appropriate quantification of the uncertainty and extreme events. In this paper, information theory is applied to compute the statistical response and find the most sensitive perturbation direction of different El Ni\~no-Southern Oscillation (ENSO) events to initial value and model parameter perturbations. Depending on the initial phase and the time horizon, different state variables contribute to the most sensitive perturbation direction. While initial perturbations in sea surface temperature (SST) and thermocline depth usually lead to the most significant response of SST at short- and long-range, respectively, initial adjustment of the zonal advection can be crucial to trigger strong statistical responses at medium-range around 5 to 7 months, especially at the transient phases between El Ni\~no and La Ni\~na. It is also shown that the response in the variance triggered by external random forcing perturbations, such as the wind bursts, often dominates the mean response, making the resulting most sensitive direction very different from the trajectory-wise methods. Finally, despite the strong non-Gaussian climatology distributions, using Gaussian approximations in the information theory is efficient and accurate for computing the statistical response, allowing the method to be applied to sophisticated operational systems.

The lack of an accessible and effective system for blind individuals to create handwritten signatures presents a significant barrier to their independence and full participation in various aspects of life. This research introduces the Tactile Signature System, a groundbreaking approach that empowers individuals with visual impairments to form their unique handwritten signatures. Key features of the system include: Personalized customization: Through tactile interaction and voice algorithmic guidance, individuals create signatures reflecting their preferences and natural writing style. Real-time feedback: AI-powered voice prompts and analysis ensure accuracy and consistency in signature formation. Accessibility: Installation in local service centers provides a secure and supervised environment for signature creation. The system's impact reaches beyond the individual level: Promotes inclusivity and independence: Blind individuals can engage in legal and financial transactions without relying on others. Empowers and fosters equal opportunities: Participation in education, employment, and civic engagement becomes more accessible. Aligns with international conventions: Upholds the right of persons with disabilities to participate fully in society. The Tactile Signature System represents a significant step towards an inclusive and accessible future for individuals with visual impairments.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司