亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The extrapolation capability of Large Language Models (LLMs) based on Rotary Position Embedding is currently a topic of considerable interest. The mainstream approach to addressing extrapolation with LLMs involves modifying RoPE by replacing 10000, the rotary base of $\theta_n={10000}^{-2n/d}$ in the original RoPE, with a larger value and providing longer fine-tuning text. In this work, we first observe that fine-tuning a RoPE-based LLM with either a smaller or larger base in pre-training context length could significantly enhance its extrapolation performance. After that, we propose \textbf{\textit{Scaling Laws of RoPE-based Extrapolation}}, a unified framework from the periodic perspective, to describe the relationship between the extrapolation performance and base value as well as tuning context length. In this process, we also explain the origin of the RoPE-based extrapolation issue by \textbf{\textit{critical dimension for extrapolation}}. Besides these observations and analyses, we achieve extrapolation up to 1 million context length within only 16K training length on LLaMA2 7B and 13B.

相關內容

Web search engines arguably form the most popular data-driven systems in contemporary society. They wield a considerable power by functioning as gatekeepers of the Web, with most user journeys on the Web beginning with them. Starting from the late 1990s, search engines have been dominated by the paradigm of link-based web search. In this paper, we critically analyze the political economy of the paradigm of link-based web search, drawing upon insights and methodologies from critical political economy. We draw several insights on how link-based web search has led to phenomena that favor capital through long-term structural changes on the Web, and how it has led to accentuating unpaid digital labor and ecologically unsustainable practices, among several others. We show how contemporary observations on the degrading quality of link-based web search can be traced back to the internal contradictions with the paradigm, and how such socio-technical phenomena may lead to a disutility of the link-based web search model. Our contribution is primarily on enhancing the understanding of the political economy of link-based web search, and laying bare the phenomena at work, and implicitly catalyze the search for alternative models.

WhatsApp has become a pivotal communication tool in India, transcending cultural boundaries and deeply integrating into the nation's digital landscape. Meta's introduction of WhatsApp for Business aligns seamlessly with the platform's popularity, offering businesses a crucial tool. However, the monetization plans pose challenges, particularly for smaller businesses, in balancing revenue goals with accessibility. This study, employing discourse analysis, examines Meta's infrastructuring of WhatsApp in India, emphasizing the dynamic interplay of technological, social, and cultural dimensions. Consequently, it highlights potential power differences caused by the deployment of WhatsApp for Business followed by its gradual but significant modifications, encouraging scholars to investigate the implications and ethics of rapid technological changes, particularly for marginalized users.

Knowledge-based Visual Question Answering (VQA) requires models to incorporate external knowledge to respond to questions about visual content. Previous methods mostly follow the "retrieve and generate" paradigm. Initially, they utilize a pre-trained retriever to fetch relevant knowledge documents, subsequently employing them to generate answers. While these methods have demonstrated commendable performance in the task, they possess limitations: (1) they employ an independent retriever to acquire knowledge solely based on the similarity between the query and knowledge embeddings, without assessing whether the knowledge document is truly conducive to helping answer the question; (2) they convert the image into text and then conduct retrieval and answering in natural language space, which may not ensure comprehensive acquisition of all image information. To address these limitations, we propose Boter, a novel framework designed to bootstrap knowledge selection and question answering by leveraging the robust multimodal perception capabilities of the Multimodal Large Language Model (MLLM). The framework consists of two modules: Selector and Answerer, where both are initialized by the MLLM and parameter-efficiently finetuned in a simple cycle: find key knowledge in the retrieved knowledge documents using the Selector, and then use them to finetune the Answerer to predict answers; obtain the pseudo-labels of key knowledge documents based on the predictions of the Answerer and weak supervision labels, and then finetune the Selector to select key knowledge; repeat. Our framework significantly enhances the performance of the baseline on the challenging open-domain Knowledge-based VQA benchmark, OK-VQA, achieving a state-of-the-art accuracy of 62.83%.

While the theoretical analysis of evolutionary algorithms (EAs) has made significant progress for pseudo-Boolean optimization problems in the last 25 years, only sporadic theoretical results exist on how EAs solve permutation-based problems. To overcome the lack of permutation-based benchmark problems, we propose a general way to transfer the classic pseudo-Boolean benchmarks into benchmarks defined on sets of permutations. We then conduct a rigorous runtime analysis of the permutation-based $(1+1)$ EA proposed by Scharnow, Tinnefeld, and Wegener (2004) on the analogues of the LeadingOnes and Jump benchmarks. The latter shows that, different from bit-strings, it is not only the Hamming distance that determines how difficult it is to mutate a permutation $\sigma$ into another one $\tau$, but also the precise cycle structure of $\sigma \tau^{-1}$. For this reason, we also regard the more symmetric scramble mutation operator. We observe that it not only leads to simpler proofs, but also reduces the runtime on jump functions with odd jump size by a factor of $\Theta(n)$. Finally, we show that a heavy-tailed version of the scramble operator, as in the bit-string case, leads to a speed-up of order $m^{\Theta(m)}$ on jump functions with jump size $m$. A short empirical analysis confirms these findings, but also reveals that small implementation details like the rate of void mutations can make an important difference.

Knowledge sharing about emerging threats is crucial in the rapidly advancing field of cybersecurity and forms the foundation of Cyber Threat Intelligence (CTI). In this context, Large Language Models are becoming increasingly significant in the field of cybersecurity, presenting a wide range of opportunities. This study surveys the performance of ChatGPT, GPT4all, Dolly, Stanford Alpaca, Alpaca-LoRA, Falcon, and Vicuna chatbots in binary classification and Named Entity Recognition (NER) tasks performed using Open Source INTelligence (OSINT). We utilize well-established data collected in previous research from Twitter to assess the competitiveness of these chatbots when compared to specialized models trained for those tasks. In binary classification experiments, Chatbot GPT-4 as a commercial model achieved an acceptable F1 score of 0.94, and the open-source GPT4all model achieved an F1 score of 0.90. However, concerning cybersecurity entity recognition, all evaluated chatbots have limitations and are less effective. This study demonstrates the capability of chatbots for OSINT binary classification and shows that they require further improvement in NER to effectively replace specially trained models. Our results shed light on the limitations of the LLM chatbots when compared to specialized models, and can help researchers improve chatbots technology with the objective to reduce the required effort to integrate machine learning in OSINT-based CTI tools.

Despite the progress of Semi-supervised Learning (SSL), existing methods fail to utilize unlabeled data effectively and efficiently. Many pseudo-label-based methods select unlabeled examples based on inaccurate confidence scores from the classifier. Most prior work also uses all available unlabeled data without pruning, making it difficult to handle large amounts of unlabeled data. To address these issues, we propose two methods: Variational Confidence Calibration (VCC) and Influence-Function-based Unlabeled Sample Elimination (INFUSE). VCC is an universal plugin for SSL confidence calibration, using a variational autoencoder to select more accurate pseudo labels based on three types of consistency scores. INFUSE is a data pruning method that constructs a core dataset of unlabeled examples under SSL. Our methods are effective in multiple datasets and settings, reducing classification errors rates and saving training time. Together, VCC-INFUSE reduces the error rate of FlexMatch on the CIFAR-100 dataset by 1.08% while saving nearly half of the training time.

The potential of automatic task-solving through Large Language Model (LLM)-based multi-agent collaboration has recently garnered widespread attention from both the research community and industry. While utilizing natural language to coordinate multiple agents presents a promising avenue for democratizing agent technology for general users, designing coordination strategies remains challenging with existing coordination frameworks. This difficulty stems from the inherent ambiguity of natural language for specifying the collaboration process and the significant cognitive effort required to extract crucial information (e.g. agent relationship, task dependency, result correspondence) from a vast amount of text-form content during exploration. In this work, we present a visual exploration framework to facilitate the design of coordination strategies in multi-agent collaboration. We first establish a structured representation for LLM-based multi-agent coordination strategy to regularize the ambiguity of natural language. Based on this structure, we devise a three-stage generation method that leverages LLMs to convert a user's general goal into an executable initial coordination strategy. Users can further intervene at any stage of the generation process, utilizing LLMs and a set of interactions to explore alternative strategies. Whenever a satisfactory strategy is identified, users can commence the collaboration and examine the visually enhanced execution result. We develop AgentCoord, a prototype interactive system, and conduct a formal user study to demonstrate the feasibility and effectiveness of our approach.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

Recommender systems are widely used in big information-based companies such as Google, Twitter, LinkedIn, and Netflix. A recommender system deals with the problem of information overload by filtering important information fragments according to users' preferences. In light of the increasing success of deep learning, recent studies have proved the benefits of using deep learning in various recommendation tasks. However, most proposed techniques only aim to target individuals, which cannot be efficiently applied in group recommendation. In this paper, we propose a deep learning architecture to solve the group recommendation problem. On the one hand, as different individual preferences in a group necessitate preference trade-offs in making group recommendations, it is essential that the recommendation model can discover substitutes among user behaviors. On the other hand, it has been observed that a user as an individual and as a group member behaves differently. To tackle such problems, we propose using an attention mechanism to capture the impact of each user in a group. Specifically, our model automatically learns the influence weight of each user in a group and recommends items to the group based on its members' weighted preferences. We conduct extensive experiments on four datasets. Our model significantly outperforms baseline methods and shows promising results in applying deep learning to the group recommendation problem.

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

北京阿比特科技有限公司