亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The $\Sigma$-QMAC problem is introduced, involving $S$ servers, $K$ classical ($\mathbb{F}_d$) data streams, and $T$ independent quantum systems. Data stream ${\sf W}_k, k\in[K]$ is replicated at a subset of servers $\mathcal{W}(k)\subset[S]$, and quantum system $\mathcal{Q}_t, t\in[T]$ is distributed among a subset of servers $\mathcal{E}(t)\subset[S]$ such that Server $s\in\mathcal{E}(t)$ receives subsystem $\mathcal{Q}_{t,s}$ of $\mathcal{Q}_t=(\mathcal{Q}_{t,s})_{s\in\mathcal{E}(t)}$. Servers manipulate their quantum subsystems according to their data and send the subsystems to a receiver. The total download cost is $\sum_{t\in[T]}\sum_{s\in\mathcal{E}(t)}\log_d|\mathcal{Q}_{t,s}|$ qudits, where $|\mathcal{Q}|$ is the dimension of $\mathcal{Q}$. The states and measurements of $(\mathcal{Q}_t)_{t\in[T]}$ are required to be separable across $t\in[T]$ throughout, but for each $t\in[T]$, the subsystems of $\mathcal{Q}_{t}$ can be prepared initially in an arbitrary (independent of data) entangled state, manipulated arbitrarily by the respective servers, and measured jointly by the receiver. From the measurements, the receiver must recover the sum of all data streams. Rate is defined as the number of dits ($\mathbb{F}_d$ symbols) of the desired sum computed per qudit of download. The capacity of $\Sigma$-QMAC, i.e., the supremum of achievable rates is characterized for arbitrary data replication and entanglement distribution maps $\mathcal{W}, \mathcal{E}$. Coding based on the $N$-sum box abstraction is optimal in every case. Notably, for every $S\neq 3$ there exists an instance of the $\Sigma$-QMAC where $S$-party entanglement is necessary to achieve the fully entangled capacity.

相關內容

A new approach to analyzing intrinsic properties of the Josephus function, $J_{_k}$, is presented in this paper. The linear structure between extreme points of $J_{_k}$ is fully revealed, leading to the design of an efficient algorithm for evaluating $J_{_k}(n)$. Algebraic expressions that describe how recursively compute extreme points, including fixed points, are derived. The existence of consecutive extreme and also fixed points for all $k\geq 2$ is proven as a consequence, which generalizes Knuth result for $k=2$. Moreover, an extensive comparative numerical experiment is conducted to illustrate the performance of the proposed algorithm for evaluating the Josephus function compared to established algorithms. The results show that the proposed scheme is highly effective in computing $J_{_k}(n)$ for large inputs.

We study the minority-opinion dynamics over a fully-connected network of $n$ nodes with binary opinions. Upon activation, a node receives a sample of opinions from a limited number of neighbors chosen uniformly at random. Each activated node then adopts the opinion that is least common within the received sample. Unlike all other known consensus dynamics, we prove that this elementary protocol behaves in dramatically different ways, depending on whether activations occur sequentially or in parallel. Specifically, we show that its expected consensus time is exponential in $n$ under asynchronous models, such as asynchronous GOSSIP. On the other hand, despite its chaotic nature, we show that it converges within $O(\log^2 n)$ rounds with high probability under synchronous models, such as synchronous GOSSIP. Finally, our results shed light on the bit-dissemination problem, that was previously introduced to model the spread of information in biological scenarios. Specifically, our analysis implies that the minority-opinion dynamics is the first stateless solution to this problem, in the parallel passive-communication setting, achieving convergence within a polylogarithmic number of rounds. This, together with a known lower bound for sequential stateless dynamics, implies a parallel-vs-sequential gap for this problem that is nearly quadratic in the number $n$ of nodes. This is in contrast to all known results for problems in this area, which exhibit a linear gap between the parallel and the sequential setting.

We study the classic Text-to-Pattern Hamming Distances problem: given a pattern $P$ of length $m$ and a text $T$ of length $n$, both over a polynomial-size alphabet, compute the Hamming distance between $P$ and $T[i\, .\, . \, i+m-1]$ for every shift $i$, under the standard Word-RAM model with $\Theta(\log n)$-bit words. - We provide an $O(n\sqrt{m})$ time Las Vegas randomized algorithm for this problem, beating the decades-old $O(n \sqrt{m \log m})$ running time [Abrahamson, SICOMP 1987]. We also obtain a deterministic algorithm, with a slightly higher $O(n\sqrt{m}(\log m\log\log m)^{1/4})$ running time. Our randomized algorithm extends to the $k$-bounded setting, with running time $O\big(n+\frac{nk}{\sqrt{m}}\big)$, removing all the extra logarithmic factors from earlier algorithms [Gawrychowski and Uzna\'{n}ski, ICALP 2018; Chan, Golan, Kociumaka, Kopelowitz and Porat, STOC 2020]. - For the $(1+\epsilon)$-approximate version of Text-to-Pattern Hamming Distances, we give an $\tilde{O}(\epsilon^{-0.93}n)$ time Monte Carlo randomized algorithm, beating the previous $\tilde{O}(\epsilon^{-1}n)$ running time [Kopelowitz and Porat, FOCS 2015; Kopelowitz and Porat, SOSA 2018]. Our approximation algorithm exploits a connection with $3$SUM, and uses a combination of Fredman's trick, equality matrix product, and random sampling; in particular, we obtain new results on approximate counting versions of $3$SUM and Exact Triangle, which may be of independent interest. Our exact algorithms use a novel combination of hashing, bit-packed FFT, and recursion; in particular, we obtain a faster algorithm for computing the sumset of two integer sets, in the regime when the universe size is close to quadratic in the number of elements. We also prove a fine-grained equivalence between the exact Text-to-Pattern Hamming Distances problem and a range-restricted, counting version of $3$SUM.

A universal partial cycle (or upcycle) for $\mathcal{A}^n$ is a cyclic sequence that covers each word of length $n$ over the alphabet $\mathcal{A}$ exactly once -- like a De Bruijn cycle, except that we also allow a wildcard symbol $\mathord{\diamond}$ that can represent any letter of $\mathcal{A}$. Chen et al. in 2017 and Goeckner et al. in 2018 showed that the existence and structure of upcycles are highly constrained, unlike those of De Bruijn cycles, which exist for any alphabet size and word length. Moreover, it was not known whether any upcycles existed for $n \ge 5$. We present several examples of upcycles over both binary and non-binary alphabets for $n = 8$. We generalize two graph-theoretic representations of De Bruijn cycles to upcycles. We then introduce novel approaches to constructing new upcycles from old ones. Notably, given any upcycle for an alphabet of size $a$, we show how to construct an upcycle for an alphabet of size $ak$ for any $k \in \mathbb{N}$, so each example generates an infinite family of upcycles. We also define folds and lifts of upcycles, which relate upcycles with differing densities of $\mathord{\diamond}$ characters. In particular, we show that every upcycle lifts to a De Bruijn cycle. Our constructions rely on a different generalization of De Bruijn cycles known as perfect necklaces, and we introduce several new examples of perfect necklaces. We extend the definitions of certain pseudorandomness properties to partial words and determine which are satisfied by all upcycles, then draw a conclusion about linear feedback shift registers. Finally, we prove new nonexistence results based on the word length $n$, alphabet size, and $\mathord{\diamond}$ density.

In this article, we study systems of $n \geq 1$, not necessarily linear, discrete differential equations (DDEs) of order $k \geq 1$ with one catalytic variable. We provide a constructive and elementary proof of algebraicity of the solutions of such equations. This part of the present article can be seen as a generalization of the pioneering work by Bousquet-M\'elou and Jehanne~(2006) who settled down the case $n=1$. Moreover, we obtain effective bounds for the algebraicity degrees of the solutions and provide an algorithm for computing annihilating polynomials of the algebraic series. Finally, we carry out a first analysis in the direction of effectivity for solving systems of DDEs in view of practical applications.

For a fixed set ${\cal H}$ of graphs, a graph $G$ is ${\cal H}$-subgraph-free if $G$ does not contain any $H \in {\cal H}$ as a (not necessarily induced) subgraph. A recently proposed framework gives a complete classification on ${\cal H}$-subgraph-free graphs (for finite sets ${\cal H}$) for problems that are solvable in polynomial time on graph classes of bounded treewidth, NP-complete on subcubic graphs, and whose NP-hardness is preserved under edge subdivision. While a lot of problems satisfy these conditions, there are also many problems that do not satisfy all three conditions and for which the complexity ${\cal H}$-subgraph-free graphs is unknown. In this paper, we study problems for which only the first two conditions of the framework hold (they are solvable in polynomial time on classes of bounded treewidth and NP-complete on subcubic graphs, but NP-hardness is not preserved under edge subdivision). In particular, we make inroads into the classification of the complexity of four such problems: $k$-Induced Disjoint Paths, $C_5$-Colouring, Hamilton Cycle and Star $3$-Colouring. Although we do not complete the classifications, we show that the boundary between polynomial time and NP-complete differs among our problems and differs from problems that do satisfy all three conditions of the framework. Hence, we exhibit a rich complexity landscape among problems for ${\cal H}$-subgraph-free graph classes.

We derive general bounds on the probability that the empirical first-passage time $\overline{\tau}_n\equiv \sum_{i=1}^n\tau_i/n$ of a reversible ergodic Markov process inferred from a sample of $n$ independent realizations deviates from the true mean first-passage time by more than any given amount in either direction. We construct non-asymptotic confidence intervals that hold in the elusive small-sample regime and thus fill the gap between asymptotic methods and the Bayesian approach that is known to be sensitive to prior belief and tends to underestimate uncertainty in the small-sample setting. We prove sharp bounds on extreme first-passage times that control uncertainty even in cases where the mean alone does not sufficiently characterize the statistics. Our concentration-of-measure-based results allow for model-free error control and reliable error estimation in kinetic inference, and are thus important for the analysis of experimental and simulation data in the presence of limited sampling.

For an undirected unweighted graph $G=(V,E)$ with $n$ vertices and $m$ edges, let $d(u,v)$ denote the distance from $u\in V$ to $v\in V$ in $G$. An $(\alpha,\beta)$-stretch approximate distance oracle (ADO) for $G$ is a data structure that given $u,v\in V$ returns in constant (or near constant) time a value $\hat d (u,v)$ such that $d(u,v) \le \hat d (u,v) \le \alpha\cdot d(u,v) + \beta$, for some reals $\alpha >1, \beta$. If $\beta = 0$, we say that the ADO has stretch $\alpha$. Thorup and Zwick~\cite{thorup2005approximate} showed that one cannot beat stretch 3 with subquadratic space (in terms of $n$) for general graphs. P\v{a}tra\c{s}cu and Roditty~\cite{patrascu2010distance} showed that one can obtain stretch 2 using $O(m^{1/3}n^{4/3})$ space, and so if $m$ is subquadratic in $n$ then the space usage is also subquadratic. Moreover, P\v{a}tra\c{s}cu and Roditty~\cite{patrascu2010distance} showed that one cannot beat stretch 2 with subquadratic space even for graphs where $m=\tilde{O}(n)$, based on the set-intersection hypothesis. In this paper we explore the conditions for which an ADO can be stored using subquadratic space while supporting a sub-2 stretch. In particular, we show that if the maximum degree in $G$ is $\Delta_G \leq O(n^{1/2-\varepsilon})$ for some $0<\varepsilon \leq 1/2$, then there exists an ADO for $G$ that uses $\tilde{O}(n^{2-\frac {2\varepsilon}{3}})$ space and has a sub-2 stretch. Moreover, we prove a conditional lower bound, based on the set intersection hypothesis, which states that for any positive integer $k \leq \log n$, obtaining a sub-$\frac{k+2}{k}$ stretch for graphs with maximum degree $\Theta(n^{1/k})$ requires quadratic space. Thus, for graphs with maximum degree $\Theta(n^{1/2})$, obtaining a sub-2 stretch requires quadratic space.

Reachability analysis plays a central role in system design and verification. The reachability problem, denoted $\Diamond^J\,\Phi$, asks whether the system will meet the property $\Phi$ after some time in a given time interval $J$. Recently, it has been considered on a novel kind of real-time systems -- quantum continuous-time Markov chains (QCTMCs), and embedded into the model-checking algorithm. In this paper, we further study the repeated reachability problem in QCTMCs, denoted $\Box^I\,\Diamond^J\,\Phi$, which concerns whether the system starting from each \emph{absolute} time in $I$ will meet the property $\Phi$ after some coming \emph{relative} time in $J$. First of all, we reduce it to the real root isolation of a class of real-valued functions (exponential polynomials), whose solvability is conditional to Schanuel's conjecture being true. To speed up the procedure, we employ the strategy of sampling. The original problem is shown to be equivalent to the existence of a finite collection of satisfying samples. We then present a sample-driven procedure, which can effectively refine the sample space after each time of sampling, no matter whether the sample itself is successful or conflicting. The improvement on efficiency is validated by randomly generated instances. Hence the proposed method would be promising to attack the repeated reachability problems together with checking other $\omega$-regular properties in a wide scope of real-time systems.

We generalized a modified exponentialized estimator by pushing the robust-optimal (RO) index $\lambda$ to $-\infty$ for achieving robustness to outliers by optimizing a quasi-Minimin function. The robustness is realized and controlled adaptively by the RO index without any predefined threshold. Optimality is guaranteed by expansion of the convexity region in the Hessian matrix to largely avoid local optima. Detailed quantitative analysis on both robustness and optimality are provided. The results of proposed experiments on fitting tasks for three noisy non-convex functions and the digits recognition task on the MNIST dataset consolidate the conclusions.

北京阿比特科技有限公司