亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Benchmarking heuristic algorithms is vital to understand under which conditions and on what kind of problems certain algorithms perform well. In most current research into heuristic optimization algorithms, only a very limited number of scenarios, algorithm configurations and hyper-parameter settings are explored, leading to incomplete and often biased insights and results. This paper presents a novel approach we call explainable benchmarking. Introducing the IOH-Xplainer software framework, for analyzing and understanding the performance of various optimization algorithms and the impact of their different components and hyper-parameters. We showcase the framework in the context of two modular optimization frameworks. Through this framework, we examine the impact of different algorithmic components and configurations, offering insights into their performance across diverse scenarios. We provide a systematic method for evaluating and interpreting the behaviour and efficiency of iterative optimization heuristics in a more transparent and comprehensible manner, allowing for better benchmarking and algorithm design.

相關內容

The extended persistence diagram is an invariant of piecewise linear functions, which is known to be stable under perturbations of functions with respect to the bottleneck distance as introduced by Cohen-Steiner, Edelsbrunner, and Harer. We address the question of universality, which asks for the largest possible stable distance on extended persistence diagrams, showing that a more discriminative variant of the bottleneck distance is universal. Our result applies more generally to settings where persistence diagrams are considered only up to a certain degree. We achieve our results by establishing a functorial construction and several characteristic properties of relative interlevel set homology, which mirror the classical Eilenberg--Steenrod axioms. Finally, we contrast the bottleneck distance with the interleaving distance of sheaves on the real line by showing that the latter is not intrinsic, let alone universal. This particular result has the further implication that the interleaving distance of Reeb graphs is not intrinsic either.

We propose a zero-shot approach to image harmonization, aiming to overcome the reliance on large amounts of synthetic composite images in existing methods. These methods, while showing promising results, involve significant training expenses and often struggle with generalization to unseen images. To this end, we introduce a fully modularized framework inspired by human behavior. Leveraging the reasoning capabilities of recent foundation models in language and vision, our approach comprises three main stages. Initially, we employ a pretrained vision-language model (VLM) to generate descriptions for the composite image. Subsequently, these descriptions guide the foreground harmonization direction of a text-to-image generative model (T2I). We refine text embeddings for enhanced representation of imaging conditions and employ self-attention and edge maps for structure preservation. Following each harmonization iteration, an evaluator determines whether to conclude or modify the harmonization direction. The resulting framework, mirroring human behavior, achieves harmonious results without the need for extensive training. We present compelling visual results across diverse scenes and objects, along with a user study validating the effectiveness of our approach.

Proximal causal learning is a promising framework for identifying the causal effect under the existence of unmeasured confounders. Within this framework, the doubly robust (DR) estimator was derived and has shown its effectiveness in estimation, especially when the model assumption is violated. However, the current form of the DR estimator is restricted to binary treatments, while the treatment can be continuous in many real-world applications. The primary obstacle to continuous treatments resides in the delta function present in the original DR estimator, making it infeasible in causal effect estimation and introducing a heavy computational burden in nuisance function estimation. To address these challenges, we propose a kernel-based DR estimator that can well handle continuous treatments. Equipped with its smoothness, we show that its oracle form is a consistent approximation of the influence function. Further, we propose a new approach to efficiently solve the nuisance functions. We then provide a comprehensive convergence analysis in terms of the mean square error. We demonstrate the utility of our estimator on synthetic datasets and real-world applications.

Local search is a powerful heuristic in optimization and computer science, the complexity of which has been studied in the white box and black box models. In the black box model, we are given a graph $G = (V,E)$ and oracle access to a function $f : V \to \mathbb{R}$. The local search problem is to find a vertex $v$ that is a local minimum, i.e. with $f(v) \leq f(u)$ for all $(u,v) \in E$, using as few queries to the oracle as possible. We show that if a graph $G$ admits a lazy, irreducible, and reversible Markov chain with stationary distribution $\pi$, then the randomized query complexity of local search on $G$ is $\Omega\left( \frac{\sqrt{n}}{t_{mix} \cdot \exp(3\sigma)}\right)$, where $t_{mix}$ is the mixing time of the chain and $\sigma = \max_{u,v \in V(G)} \frac{\pi(v)}{\pi(u)}.$ This theorem formally establishes a connection between the query complexity of local search and the mixing time of the fastest mixing Markov chain for the given graph. We also get several corollaries that lower bound the complexity as a function of the spectral gap, one of which slightly improves a result from prior work.

We present a randomized, inverse-free algorithm for producing an approximate diagonalization of any $n \times n$ matrix pencil $(A,B)$. The bulk of the algorithm rests on a randomized divide-and-conquer eigensolver for the generalized eigenvalue problem originally proposed by Ballard, Demmel, and Dumitriu [Technical Report 2010]. We demonstrate that this divide-and-conquer approach can be formulated to succeed with high probability provided the input pencil is sufficiently well-behaved, which is accomplished by generalizing the recent pseudospectral shattering work of Banks, Garza-Vargas, Kulkarni, and Srivastava [Foundations of Computational Mathematics 2022]. In particular, we show that perturbing and scaling $(A,B)$ regularizes its pseudospectra, allowing divide-and-conquer to run over a simple random grid and in turn producing an accurate diagonalization of $(A,B)$ in the backward error sense. The main result of the paper states the existence of a randomized algorithm that with high probability (and in exact arithmetic) produces invertible $S,T$ and diagonal $D$ such that $||A - SDT^{-1}||_2 \leq \varepsilon$ and $||B - ST^{-1}||_2 \leq \varepsilon$ in at most $O \left(\log^2 \left( \frac{n}{\varepsilon} \right) T_{\text{MM}}(n) \right)$ operations, where $T_{\text{MM}}(n)$ is the asymptotic complexity of matrix multiplication. This not only provides a new set of guarantees for highly parallel generalized eigenvalue solvers but also establishes nearly matrix multiplication time as an upper bound on the complexity of inverse-free, exact arithmetic matrix pencil diagonalization.

We prove the expected disturbance caused to a quantum system by a sequence of randomly ordered two-outcome projective measurements is upper bounded by the square root of the probability that at least one measurement in the sequence accepts. We call this bound the Gentle Random Measurement Lemma. We then consider problems in which we are given sample access to an unknown state $\rho$ and asked to estimate properties of the accepting probabilities $\text{Tr}[M_i \rho]$ of a set of measurements $\{M_1, M_2, \ldots , M_m\}$. We call these types of problems Quantum Event Learning Problems. Using the gentle random measurement lemma, we show randomly ordering projective measurements solves the Quantum OR problem, answering an open question of Aaronson. We also give a Quantum OR protocol which works on non-projective measurements but which requires a more complicated type of measurement, which we call a Blended Measurement. Given additional guarantees on the set of measurements $\{M_1, \ldots, M_m\}$, we show the Quantum OR protocols developed in this paper can also be used to find a measurement $M_i$ such that $\text{Tr}[M_i \rho]$ is large. We also give a blended measurement based protocol for estimating the average accepting probability of a set of measurements on an unknown state. Finally we consider the Threshold Search Problem described by O'Donnell and B\u{a}descu. By building on our Quantum Event Finding result we show that randomly ordered (or blended) measurements can be used to solve this problem using $O(\log^2(m) / \epsilon^2)$ copies of $\rho$. Consequently, we obtain an algorithm for Shadow Tomography which requires $\tilde{O}(\log^2(m)\log(d)/\epsilon^4)$ samples, matching the current best known sample complexity. This algorithm does not require injected noise in the quantum measurements, but does require measurements to be made in a random order and so is no longer online.

We propose a new method for cloth digitalization. Deviating from existing methods which learn from data captured under relatively casual settings, we propose to learn from data captured in strictly tested measuring protocols, and find plausible physical parameters of the cloths. However, such data is currently absent, so we first propose a new dataset with accurate cloth measurements. Further, the data size is considerably smaller than the ones in current deep learning, due to the nature of the data capture process. To learn from small data, we propose a new Bayesian differentiable cloth model to estimate the complex material heterogeneity of real cloths. It can provide highly accurate digitalization from very limited data samples. Through exhaustive evaluation and comparison, we show our method is accurate in cloth digitalization, efficient in learning from limited data samples, and general in capturing material variations. Code and data are available //github.com/realcrane/Bayesian-Differentiable-Physics-for-Cloth-Digitalization

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Cold-start problems are long-standing challenges for practical recommendations. Most existing recommendation algorithms rely on extensive observed data and are brittle to recommendation scenarios with few interactions. This paper addresses such problems using few-shot learning and meta learning. Our approach is based on the insight that having a good generalization from a few examples relies on both a generic model initialization and an effective strategy for adapting this model to newly arising tasks. To accomplish this, we combine the scenario-specific learning with a model-agnostic sequential meta-learning and unify them into an integrated end-to-end framework, namely Scenario-specific Sequential Meta learner (or s^2 meta). By doing so, our meta-learner produces a generic initial model through aggregating contextual information from a variety of prediction tasks while effectively adapting to specific tasks by leveraging learning-to-learn knowledge. Extensive experiments on various real-world datasets demonstrate that our proposed model can achieve significant gains over the state-of-the-arts for cold-start problems in online recommendation. Deployment is at the Guess You Like session, the front page of the Mobile Taobao.

北京阿比特科技有限公司