亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Problem definition. In retailing, discrete choice models (DCMs) are commonly used to capture the choice behavior of customers when offered an assortment of products. When estimating DCMs using transaction data, flexible models (such as machine learning models or nonparametric models) are typically not interpretable and hard to estimate, while tractable models (such as the multinomial logit model) tend to misspecify the complex behavior represeted in the data. Methodology/results. In this study, we use a forest of binary decision trees to represent DCMs. This approach is based on random forests, a popular machine learning algorithm. The resulting model is interpretable: the decision trees can explain the decision-making process of customers during the purchase. We show that our approach can predict the choice probability of any DCM consistently and thus never suffers from misspecification. Moreover, our algorithm predicts assortments unseen in the training data. The mechanism and errors can be theoretically analyzed. We also prove that the random forest can recover preference rankings of customers thanks to the splitting criterion such as the Gini index and information gain ratio. Managerial implications. The framework has unique practical advantages. It can capture customers' behavioral patterns such as irrationality or sequential searches when purchasing a product. It handles nonstandard formats of training data that result from aggregation. It can measure product importance based on how frequently a random customer would make decisions depending on the presence of the product. It can also incorporate price information and customer features. Our numerical experiments using synthetic and real data show that using random forests to estimate customer choices can outperform existing methods.

相關內容

Hyperspectral imaging (HSI) has become a key technology for non-invasive quality evaluation in various fields, offering detailed insights through spatial and spectral data. Despite its efficacy, the complexity and high cost of HSI systems have hindered their widespread adoption. This study addressed these challenges by exploring deep learning-based hyperspectral image reconstruction from RGB (Red, Green, Blue) images, particularly for agricultural products. Specifically, different hyperspectral reconstruction algorithms, such as Hyperspectral Convolutional Neural Network - Dense (HSCNN-D), High-Resolution Network (HRNET), and Multi-Scale Transformer Plus Plus (MST++), were compared to assess the dry matter content of sweet potatoes. Among the tested reconstruction methods, HRNET demonstrated superior performance, achieving the lowest mean relative absolute error (MRAE) of 0.07, root mean square error (RMSE) of 0.03, and the highest peak signal-to-noise ratio (PSNR) of 32.28 decibels (dB). Some key features were selected using the genetic algorithm (GA), and their importance was interpreted using explainable artificial intelligence (XAI). Partial least squares regression (PLSR) models were developed using the RGB, reconstructed, and ground truth (GT) data. The visual and spectra quality of these reconstructed methods was compared with GT data, and predicted maps were generated. The results revealed the prospect of deep learning-based hyperspectral image reconstruction as a cost-effective and efficient quality assessment tool for agricultural and biological applications.

Conversational dense retrieval has shown to be effective in conversational search. However, a major limitation of conversational dense retrieval is their lack of interpretability, hindering intuitive understanding of model behaviors for targeted improvements. This paper presents CONVINV, a simple yet effective approach to shed light on interpretable conversational dense retrieval models. CONVINV transforms opaque conversational session embeddings into explicitly interpretable text while faithfully maintaining their original retrieval performance as much as possible. Such transformation is achieved by training a recently proposed Vec2Text model based on the ad-hoc query encoder, leveraging the fact that the session and query embeddings share the same space in existing conversational dense retrieval. To further enhance interpretability, we propose to incorporate external interpretable query rewrites into the transformation process. Extensive evaluations on three conversational search benchmarks demonstrate that CONVINV can yield more interpretable text and faithfully preserve original retrieval performance than baselines. Our work connects opaque session embeddings with transparent query rewriting, paving the way toward trustworthy conversational search.

In many settings, interventions may be more effective for some individuals than others, so that targeting interventions may be beneficial. We analyze the value of targeting in the context of a large-scale field experiment with over 53,000 college students, where the goal was to use "nudges" to encourage students to renew their financial-aid applications before a non-binding deadline. We begin with baseline approaches to targeting. First, we target based on a causal forest that estimates heterogeneous treatment effects and then assigns students to treatment according to those estimated to have the highest treatment effects. Next, we evaluate two alternative targeting policies, one targeting students with low predicted probability of renewing financial aid in the absence of the treatment, the other targeting those with high probability. The predicted baseline outcome is not the ideal criterion for targeting, nor is it a priori clear whether to prioritize low, high, or intermediate predicted probability. Nonetheless, targeting on low baseline outcomes is common in practice, for example because the relationship between individual characteristics and treatment effects is often difficult or impossible to estimate with historical data. We propose hybrid approaches that incorporate the strengths of both predictive approaches (accurate estimation) and causal approaches (correct criterion); we show that targeting intermediate baseline outcomes is most effective in our specific application, while targeting based on low baseline outcomes is detrimental. In one year of the experiment, nudging all students improved early filing by an average of 6.4 percentage points over a baseline average of 37% filing, and we estimate that targeting half of the students using our preferred policy attains around 75% of this benefit.

Algorithmic predictions are increasingly used to inform the allocations of goods and interventions in the public sphere. In these domains, predictions serve as a means to an end. They provide stakeholders with insights into likelihood of future events as a means to improve decision making quality, and enhance social welfare. However, if maximizing welfare is the ultimate goal, prediction is only a small piece of the puzzle. There are various other policy levers a social planner might pursue in order to improve bottom-line outcomes, such as expanding access to available goods, or increasing the effect sizes of interventions. Given this broad range of design decisions, a basic question to ask is: What is the relative value of prediction in algorithmic decision making? How do the improvements in welfare arising from better predictions compare to those of other policy levers? The goal of our work is to initiate the formal study of these questions. Our main results are theoretical in nature. We identify simple, sharp conditions determining the relative value of prediction vis-\`a-vis expanding access, within several statistical models that are popular amongst quantitative social scientists. Furthermore, we illustrate how these theoretical insights may be used to guide the design of algorithmic decision making systems in practice.

Large language models (LLMs) have attracted considerable attention as they are capable of showcasing impressive capabilities generating comparable high-quality responses to human inputs. LLMs, can not only compose textual scripts such as emails and essays but also executable programming code. Contrary, the automated reasoning capability of these LLMs in performing statistically-driven descriptive analysis, particularly on user-specific data and as personal assistants to users with limited background knowledge in an application domain who would like to carry out basic, as well as advanced statistical and domain-specific analysis is not yet fully explored. More importantly, the performance of these LLMs has not been compared and discussed in detail when domain-specific data analysis tasks are needed. This study, consequently, explores whether LLMs can be used as generative AI-based personal assistants to users with minimal background knowledge in an application domain infer key data insights. To demonstrate the performance of the LLMs, the study reports a case study through which descriptive statistical analysis, as well as Natural Language Processing (NLP) based investigations, are performed on a number of phishing emails with the objective of comparing the accuracy of the results generated by LLMs to the ones produced by analysts. The experimental results show that LangChain and the Generative Pre-trained Transformer (GPT-4) excel in numerical reasoning tasks i.e., temporal statistical analysis, achieve competitive correlation with human judgments on feature engineering tasks while struggle to some extent on domain specific knowledge reasoning, where domain-specific knowledge is required.

The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.

The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.

As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司