亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The note clarifies a gap in the proof of the minimum distance for Projective Reed-Muller Codes. The gap was identified by S.Ghorpade and R.Ludhani in a recent article. Here the original thoughts are explained and the gap closed.

相關內容

Multi-modal Large Language Models (MLLMs) have shown remarkable capabilities in various multi-modal tasks. Nevertheless, their performance in fine-grained image understanding tasks is still limited. To address this issue, this paper proposes a new framework to enhance the fine-grained image understanding abilities of MLLMs. Specifically, we present a new method for constructing the instruction tuning dataset at a low cost by leveraging annotations in existing datasets. A self-consistent bootstrapping method is also introduced to extend existing dense object annotations into high-quality referring-expression-bounding-box pairs. These methods enable the generation of high-quality instruction data which includes a wide range of fundamental abilities essential for fine-grained image perception. Moreover, we argue that the visual encoder should be tuned during instruction tuning to mitigate the gap between full image perception and fine-grained image perception. Experimental results demonstrate the superior performance of our method. For instance, our model exhibits a 5.2% accuracy improvement over Qwen-VL on GQA and surpasses the accuracy of Kosmos-2 by 24.7% on RefCOCO_val. We also attain the top rank on the leaderboard of MMBench. This promising performance is achieved by training on only publicly available data, making it easily reproducible. The models, datasets, and codes are publicly available at //github.com/SY-Xuan/Pink.

As Metaverse emerges as the next-generation Internet paradigm, the ability to efficiently generate content is paramount. AIGenerated Content (AIGC) emerges as a key solution, yet the resource intensive nature of large Generative AI (GAI) models presents challenges. To address this issue, we introduce an AIGC-as-a-Service (AaaS) architecture, which deploys AIGC models in wireless edge networks to ensure broad AIGC services accessibility for Metaverse users. Nonetheless, an important aspect of providing personalized user experiences requires carefully selecting AIGC Service Providers (ASPs) capable of effectively executing user tasks, which is complicated by environmental uncertainty and variability. Addressing this gap in current research, we introduce the AI-Generated Optimal Decision (AGOD) algorithm, a diffusion model-based approach for generating the optimal ASP selection decisions. Integrating AGOD with Deep Reinforcement Learning (DRL), we develop the Deep Diffusion Soft Actor-Critic (D2SAC) algorithm, enhancing the efficiency and effectiveness of ASP selection. Our comprehensive experiments demonstrate that D2SAC outperforms seven leading DRL algorithms. Furthermore, the proposed AGOD algorithm has the potential for extension to various optimization problems in wireless networks, positioning it as a promising approach for future research on AIGC-driven services. The implementation of our proposed method is available at: //github.com/Lizonghang/AGOD.

Contrastive Learning (CL) performances as a rising approach to address the challenge of sparse and noisy recommendation data. Although having achieved promising results, most existing CL methods only perform either hand-crafted data or model augmentation for generating contrastive pairs to find a proper augmentation operation for different datasets, which makes the model hard to generalize. Additionally, since insufficient input data may lead the encoder to learn collapsed embeddings, these CL methods expect a relatively large number of training data (e.g., large batch size or memory bank) to contrast. However, not all contrastive pairs are always informative and discriminative enough for the training processing. Therefore, a more general CL-based recommendation model called Meta-optimized Contrastive Learning for sequential Recommendation (MCLRec) is proposed in this work. By applying both data augmentation and learnable model augmentation operations, this work innovates the standard CL framework by contrasting data and model augmented views for adaptively capturing the informative features hidden in stochastic data augmentation. Moreover, MCLRec utilizes a meta-learning manner to guide the updating of the model augmenters, which helps to improve the quality of contrastive pairs without enlarging the amount of input data. Finally, a contrastive regularization term is considered to encourage the augmentation model to generate more informative augmented views and avoid too similar contrastive pairs within the meta updating. The experimental results on commonly used datasets validate the effectiveness of MCLRec.

The advent of Large Language Models (LLMs) heralds a pivotal shift in online user interactions with information. Traditional Information Retrieval (IR) systems primarily relied on query-document matching, whereas LLMs excel in comprehending and generating human-like text, thereby enriching the IR experience significantly. While LLMs are often associated with chatbot functionalities, this paper extends the discussion to their explicit application in information retrieval. We explore methodologies to optimize the retrieval process, select optimal models, and effectively scale and orchestrate LLMs, aiming for cost-efficiency and enhanced result accuracy. A notable challenge, model hallucination-where the model yields inaccurate or misinterpreted data-is addressed alongside other model-specific hurdles. Our discourse extends to crucial considerations including user privacy, data optimization, and the necessity for system clarity and interpretability. Through a comprehensive examination, we unveil not only innovative strategies for integrating Language Models (LLMs) with Information Retrieval (IR) systems, but also the consequential considerations that underline the need for a balanced approach aligned with user-centric principles.

Abortion is a controversial topic that has long been debated in the US. With the recent Supreme Court decision to overturn Roe v. Wade, access to safe and legal reproductive care is once again in the national spotlight. A key issue central to this debate is patient privacy, as in the post-HITECH Act era it has become easier for medical records to be electronically accessed and shared. This study analyzed a large Twitter dataset from May to December 2022 to examine the public's reactions to Roe v. Wade's overruling and its implications for privacy. Using a mixed-methods approach consisting of computational and qualitative content analysis, we found a wide range of concerns voiced from the confidentiality of patient-physician information exchange to medical records being shared without patient consent. These findings may inform policy making and healthcare industry practices concerning medical privacy related to reproductive rights and women's health.

This article presents a study of the current state of Universities Institutional Repositories (UIRs) in Canada. UIRs are vital to sharing information and documents, mainly Electronic Thesis and Dissertation (ETDs), and theoretically allow anyone, anywhere, to access the documents contained within the repository. Despite calls for consistent and shareable metadata in these repositories, our literature review shows inconsistencies in UIRs, including incorrect use of metadata fields and the omission of crucial information, rendering the systematic analysis of UIR complex. Nonetheless, we collected the data of 57 Canadian UIRs with the aim of analyzing Canadian data and to assess the quality of its UIRs. This was surprisingly difficult due to the lack of information about the UIRs, and we attempt to ease future collection efforts by organizing vital information which are difficult to find, starting from addresses of UIRs. We furthermore present and analyze the main characteristics of the UIRs we managed to collect, using this dataset to create recommendations for future practitioners.

As Large Language Models (LLMs) are becoming prevalent in various fields, there is an urgent need for improved NLP benchmarks that encompass all the necessary knowledge of individual discipline. Many contemporary benchmarks for foundational models emphasize a broad range of subjects but often fall short in presenting all the critical subjects and encompassing necessary professional knowledge of them. This shortfall has led to skewed results, given that LLMs exhibit varying performance across different subjects and knowledge areas. To address this issue, we present psybench, the first comprehensive Chinese evaluation suite that covers all the necessary knowledge required for graduate entrance exams. psybench offers a deep evaluation of a model's strengths and weaknesses in psychology through multiple-choice questions. Our findings show significant differences in performance across different sections of a subject, highlighting the risk of skewed results when the knowledge in test sets is not balanced. Notably, only the ChatGPT model reaches an average accuracy above $70\%$, indicating that there is still plenty of room for improvement. We expect that psybench will help to conduct thorough evaluations of base models' strengths and weaknesses and assist in practical application in the field of psychology.

In Multi-Label Text Classification (MLTC), one sample can belong to more than one class. It is observed that most MLTC tasks, there are dependencies or correlations among labels. Existing methods tend to ignore the relationship among labels. In this paper, a graph attention network-based model is proposed to capture the attentive dependency structure among the labels. The graph attention network uses a feature matrix and a correlation matrix to capture and explore the crucial dependencies between the labels and generate classifiers for the task. The generated classifiers are applied to sentence feature vectors obtained from the text feature extraction network (BiLSTM) to enable end-to-end training. Attention allows the system to assign different weights to neighbor nodes per label, thus allowing it to learn the dependencies among labels implicitly. The results of the proposed model are validated on five real-world MLTC datasets. The proposed model achieves similar or better performance compared to the previous state-of-the-art models.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

Recommender systems are widely used in big information-based companies such as Google, Twitter, LinkedIn, and Netflix. A recommender system deals with the problem of information overload by filtering important information fragments according to users' preferences. In light of the increasing success of deep learning, recent studies have proved the benefits of using deep learning in various recommendation tasks. However, most proposed techniques only aim to target individuals, which cannot be efficiently applied in group recommendation. In this paper, we propose a deep learning architecture to solve the group recommendation problem. On the one hand, as different individual preferences in a group necessitate preference trade-offs in making group recommendations, it is essential that the recommendation model can discover substitutes among user behaviors. On the other hand, it has been observed that a user as an individual and as a group member behaves differently. To tackle such problems, we propose using an attention mechanism to capture the impact of each user in a group. Specifically, our model automatically learns the influence weight of each user in a group and recommends items to the group based on its members' weighted preferences. We conduct extensive experiments on four datasets. Our model significantly outperforms baseline methods and shows promising results in applying deep learning to the group recommendation problem.

北京阿比特科技有限公司