亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Is there an algorithm that takes a game in normal form as input, and outputs a Nash equilibrium? If the payoffs are integers, the answer is yes, and lot of work has been done in its computational complexity. If the payoffs are permitted to be real numbers, the answer is no, for continuity reasons. It is worthwhile to investigate the precise degree of non-computability (the Weihrauch degree), since knowing the degree entails what other approaches are available (eg, is there a randomized algorithm with positive success change?). The two player case has already been fully classified, but the multiplayer case remains open and is addressed here. Our approach involves classifying the degree of finding roots of polynomials, and lifting this to systems of polynomial inequalities via cylindrical algebraic decomposition.

相關內容

Classical convergence analyses for optimization algorithms rely on the widely-adopted uniform smoothness assumption. However, recent experimental studies have demonstrated that many machine learning problems exhibit non-uniform smoothness, meaning the smoothness factor is a function of the model parameter instead of a universal constant. In particular, it has been observed that the smoothness grows with respect to the gradient norm along the training trajectory. Motivated by this phenomenon, the recently introduced $(L_0, L_1)$-smoothness is a more general notion, compared to traditional $L$-smoothness, that captures such positive relationship between smoothness and gradient norm. Under this type of non-uniform smoothness, existing literature has designed stochastic first-order algorithms by utilizing gradient clipping techniques to obtain the optimal $\mathcal{O}(\epsilon^{-3})$ sample complexity for finding an $\epsilon$-approximate first-order stationary solution. Nevertheless, the studies of quasi-Newton methods are still lacking. Considering higher accuracy and more robustness for quasi-Newton methods, in this paper we propose a fast stochastic quasi-Newton method when there exists non-uniformity in smoothness. Leveraging gradient clipping and variance reduction, our algorithm can achieve the best-known $\mathcal{O}(\epsilon^{-3})$ sample complexity and enjoys convergence speedup with simple hyperparameter tuning. Our numerical experiments show that our proposed algorithm outperforms the state-of-the-art approaches.

This paper considers computational methods that split a vector field into three components in the case when both the vector field and the split components might be unbounded. We first employ classical Taylor expansion which, after some algebra, results in an expression for a second-order splitting which, strictly speaking, makes sense only for bounded operators. Next, using an alternative approach, we derive an error expression and an error bound in the same setting which are however valid in the presence of unbounded operators. While the paper itself is concerned with second-order splittings using three components, the method of proof in the presence of unboundedness remains valid (although significantly more complicated) in a more general scenario, which will be the subject of a forthcoming paper.

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible. Unsupervised cross-domain Reinforcement Learning (RL) pre-training shows great potential for challenging continuous visual control but poses a big challenge. In this paper, we propose \textbf{C}ross-domain \textbf{R}andom \textbf{P}re-\textbf{T}raining with \textbf{pro}totypes (CRPTpro), a novel, efficient, and effective self-supervised cross-domain RL pre-training framework. CRPTpro decouples data sampling from encoder pre-training, proposing decoupled random collection to easily and quickly generate a qualified cross-domain pre-training dataset. Moreover, a novel prototypical self-supervised algorithm is proposed to pre-train an effective visual encoder that is generic across different domains. Without finetuning, the cross-domain encoder can be implemented for challenging downstream tasks defined in different domains, either seen or unseen. Compared with recent advanced methods, CRPTpro achieves better performance on downstream policy learning without extra training on exploration agents for data collection, greatly reducing the burden of pre-training. We conduct extensive experiments across eight challenging continuous visual-control domains, including balance control, robot locomotion, and manipulation. CRPTpro significantly outperforms the next best Proto-RL(C) on 11/12 cross-domain downstream tasks with only 54\% wall-clock pre-training time, exhibiting state-of-the-art pre-training performance with greatly improved pre-training efficiency. The complete code is available at //github.com/liuxin0824/CRPTpro.

Recently, the number of parameters in DNNs has explosively increased, as exemplified by LLMs (Large Language Models), making inference on small-scale computers more difficult. Model compression technology is, therefore, essential for integration into products. In this paper, we propose a method of quantization-aware training. We introduce a novel normalization (Layer-Batch Normalization) that is independent of the mini-batch size and does not require any additional computation cost during inference. Then, we quantize the weights by the scaled round-clip function with the weight standardization. We also quantize activation functions using the same function and apply surrogate gradients to train the model with both quantized weights and the quantized activation functions. We call this method Magic for the age of Quantised DNNs (MaQD). Experimental results show that our quantization method can be achieved with minimal accuracy degradation.

The amount of information in satisfiability problem (SAT) is considered. SAT can be polynomial-time solvable when the solving algorithm holds an exponential amount of information. It is also established that SAT Kolmogorov complexity is constant. It is argued that the amount of information in SAT grows at least exponentially with the size of the input instance. The amount of information in SAT is compared with the amount of information in the fixed code algorithms and generated over runtime.

Several causal discovery algorithms have been proposed. However, when the sample size is small relative to the number of variables, the accuracy of estimating causal graphs using existing methods decreases. And some methods are not feasible when the sample size is smaller than the number of variables. To circumvent these problems, some researchers proposed causal structure learning algorithms using divide-and-conquer approaches. For learning the entire causal graph, the approaches first split variables into several subsets according to the conditional independence relationships among the variables, then apply a conventional causal discovery algorithm to each subset and merge the estimated results. Since the divide-and-conquer approach reduces the number of variables to which a causal structure learning algorithm is applied, it is expected to improve the estimation accuracy of causal graphs, especially when the sample size is small relative to the number of variables and the model is sparse. However, existing methods are either computationally expensive or do not provide sufficient accuracy when the sample size is small. This paper proposes a new algorithm for grouping variables based the ancestral relationships among the variables, under the LiNGAM assumption, where the causal relationships are linear, and the mutually independent noise are distributed as continuous non-Gaussian distributions. We call the proposed algorithm CAG. The time complexity of the ancestor finding in CAG is shown to be cubic to the number of variables. Extensive computer experiments confirm that the proposed method outperforms the original DirectLiNGAM without grouping variables and other divide-and-conquer approaches not only in estimation accuracy but also in computation time when the sample size is small relative to the number of variables and the model is sparse.

This work presents a fully GPU-accelerated algorithm for the polygonal mesh generator known as Polylla. Polylla is a tri-to-polygon mesh generator, which benefits from the half-edge data structure to manage any polygonal shape. The proposed parallel algorithm introduces a novel approach to modify triangulations to get polygonal meshes using the half-edge data structure in parallel on the GPU. By changing the adjacency values of each half-edge, the algorithm accomplish to unlink half-edges that are not used in the new polygonal mesh without the need neither removing nor allocating new memory in the GPU. The experimental results show a speedup, reaching up to $\times 83.2$ when compared to the CPU sequential implementation. Additionally, the speedup is $\times 746.8$ when the cost of copying the data structure from the host device and back is not included.

Transformers have revolutionized the machine learning landscape, gradually making their way into everyday tasks and equipping our computers with ``sparks of intelligence''. However, their runtime requirements have prevented them from being broadly deployed on mobile. As personal devices become increasingly powerful and prompt privacy becomes an ever more pressing issue, we explore the current state of mobile execution of Large Language Models (LLMs). To achieve this, we have created our own automation infrastructure, MELT, which supports the headless execution and benchmarking of LLMs on device, supporting different models, devices and frameworks, including Android, iOS and Nvidia Jetson devices. We evaluate popular instruction fine-tuned LLMs and leverage different frameworks to measure their end-to-end and granular performance, tracing their memory and energy requirements along the way. Our analysis is the first systematic study of on-device LLM execution, quantifying performance, energy efficiency and accuracy across various state-of-the-art models and showcases the state of on-device intelligence in the era of hyperscale models. Results highlight the performance heterogeneity across targets and corroborates that LLM inference is largely memory-bound. Quantization drastically reduces memory requirements and renders execution viable, but at a non-negligible accuracy cost. Drawing from its energy footprint and thermal behavior, the continuous execution of LLMs remains elusive, as both factors negatively affect user experience. Last, our experience shows that the ecosystem is still in its infancy, and algorithmic as well as hardware breakthroughs can significantly shift the execution cost. We expect NPU acceleration, and framework-hardware co-design to be the biggest bet towards efficient standalone execution, with the alternative of offloading tailored towards edge deployments.

In Multi-Label Text Classification (MLTC), one sample can belong to more than one class. It is observed that most MLTC tasks, there are dependencies or correlations among labels. Existing methods tend to ignore the relationship among labels. In this paper, a graph attention network-based model is proposed to capture the attentive dependency structure among the labels. The graph attention network uses a feature matrix and a correlation matrix to capture and explore the crucial dependencies between the labels and generate classifiers for the task. The generated classifiers are applied to sentence feature vectors obtained from the text feature extraction network (BiLSTM) to enable end-to-end training. Attention allows the system to assign different weights to neighbor nodes per label, thus allowing it to learn the dependencies among labels implicitly. The results of the proposed model are validated on five real-world MLTC datasets. The proposed model achieves similar or better performance compared to the previous state-of-the-art models.

Events are happening in real-world and real-time, which can be planned and organized occasions involving multiple people and objects. Social media platforms publish a lot of text messages containing public events with comprehensive topics. However, mining social events is challenging due to the heterogeneous event elements in texts and explicit and implicit social network structures. In this paper, we design an event meta-schema to characterize the semantic relatedness of social events and build an event-based heterogeneous information network (HIN) integrating information from external knowledge base, and propose a novel Pair-wise Popularity Graph Convolutional Network (PP-GCN) based fine-grained social event categorization model. We propose a Knowledgeable meta-paths Instances based social Event Similarity (KIES) between events and build a weighted adjacent matrix as input to the PP-GCN model. Comprehensive experiments on real data collections are conducted to compare various social event detection and clustering tasks. Experimental results demonstrate that our proposed framework outperforms other alternative social event categorization techniques.

北京阿比特科技有限公司