亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we consider the problem of deriving and incorporating accurate dynamic models for model predictive control (MPC) with an application to quadrotor control. MPC relies on precise dynamic models to achieve the desired closed-loop performance. However, the presence of uncertainties in complex systems and the environments they operate in poses a challenge in obtaining sufficiently accurate representations of the system dynamics. In this work, we make use of a deep learning tool, knowledge-based neural ordinary differential equations (KNODE), to augment a model obtained from first principles. The resulting hybrid model encompasses both a nominal first-principle model and a neural network learnt from simulated or real-world experimental data. Using a quadrotor, we benchmark our hybrid model against a state-of-the-art Gaussian Process (GP) model and show that the hybrid model provides more accurate predictions of the quadrotor dynamics and is able to generalize beyond the training data. To improve closed-loop performance, the hybrid model is integrated into a novel MPC framework, known as KNODE-MPC. Results show that the integrated framework achieves 60.2% improvement in simulations and more than 21% in physical experiments, in terms of trajectory tracking performance.

相關內容

Given its status as a classic problem and its importance to both theoreticians and practitioners, edit distance provides an excellent lens through which to understand how the theoretical analysis of algorithms impacts practical implementations. From an applied perspective, the goals of theoretical analysis are to predict the empirical performance of an algorithm and to serve as a yardstick to design novel algorithms that perform well in practice. In this paper, we systematically survey the types of theoretical analysis techniques that have been applied to edit distance and evaluate the extent to which each one has achieved these two goals. These techniques include traditional worst-case analysis, worst-case analysis parametrized by edit distance or entropy or compressibility, average-case analysis, semi-random models, and advice-based models. We find that the track record is mixed. On one hand, two algorithms widely used in practice have been born out of theoretical analysis and their empirical performance is captured well by theoretical predictions. On the other hand, all the algorithms developed using theoretical analysis as a yardstick since then have not had any practical relevance. We conclude by discussing the remaining open problems and how they can be tackled.

The superposition of data sets with internal parametric self-similarity is a longstanding and widespread technique for the analysis of many types of experimental data across the physical sciences. Typically, this superposition is performed manually, or recently by one of a few automated algorithms. However, these methods are often heuristic in nature, are prone to user bias via manual data shifting or parameterization, and lack a native framework for handling uncertainty in both the data and the resulting model of the superposed data. In this work, we develop a data-driven, non-parametric method for superposing experimental data with arbitrary coordinate transformations, which employs Gaussian process regression to learn statistical models that describe the data, and then uses maximum a posteriori estimation to optimally superpose the data sets. This statistical framework is robust to experimental noise, and automatically produces uncertainty estimates for the learned coordinate transformations. Moreover, it is distinguished from black-box machine learning in its interpretability -- specifically, it produces a model that may itself be interrogated to gain insight into the system under study. We demonstrate these salient features of our method through its application to four representative data sets characterizing the mechanics of soft materials. In every case, our method replicates results obtained using other approaches, but with reduced bias and the addition of uncertainty estimates. This method enables a standardized, statistical treatment of self-similar data across many fields, producing interpretable data-driven models that may inform applications such as materials classification, design, and discovery.

The growing complexity of Cyber-Physical Systems (CPS) and challenges in ensuring safety and security have led to the increasing use of deep learning methods for accurate and scalable anomaly detection. However, machine learning (ML) models often suffer from low performance in predicting unexpected data and are vulnerable to accidental or malicious perturbations. Although robustness testing of deep learning models has been extensively explored in applications such as image classification and speech recognition, less attention has been paid to ML-driven safety monitoring in CPS. This paper presents the preliminary results on evaluating the robustness of ML-based anomaly detection methods in safety-critical CPS against two types of accidental and malicious input perturbations, generated using a Gaussian-based noise model and the Fast Gradient Sign Method (FGSM). We test the hypothesis of whether integrating the domain knowledge (e.g., on unsafe system behavior) with the ML models can improve the robustness of anomaly detection without sacrificing accuracy and transparency. Experimental results with two case studies of Artificial Pancreas Systems (APS) for diabetes management show that ML-based safety monitors trained with domain knowledge can reduce on average up to 54.2% of robustness error and keep the average F1 scores high while improving transparency.

This paper presents a control framework on Lie groups by designing the control objective in its Lie algebra. Control on Lie groups is challenging due to its nonlinear nature and difficulties in system parameterization. Existing methods to design the control objective on a Lie group and then derive the gradient for controller design are non-trivial and can result in slow convergence in tracking control. We show that with a proper left-invariant metric, setting the gradient of the cost function as the tracking error in the Lie algebra leads to a quadratic Lyapunov function that enables globally exponential convergence. In the PD control case, we show that our controller can maintain an exponential convergence rate even when the initial error is approaching $\pi$ in SO(3). We also show the merit of this proposed framework in trajectory optimization. The proposed cost function enables the iterative Linear Quadratic Regulator (iLQR) to converge much faster than the Differential Dynamic Programming (DDP) with a well-adopted cost function when the initial trajectory is poorly initialized on SO(3).

Collision avoidance is a widely investigated topic in robotic applications. When applying collision avoidance techniques to a mobile robot, how to deal with the spatial structure of the robot still remains a challenge. In this paper, we design a configuration-aware safe control law by solving a Quadratic Programming (QP) with designed Control Barrier Functions (CBFs) constraints, which can safely navigate a mobile robotic arm to a desired region while avoiding collision with environmental obstacles. The advantage of our approach is that it correctly and in an elegant way incorporates the spatial structure of the mobile robotic arm. This is achieved by merging geometric restrictions among mobile robotic arm links into CBFs constraints. Simulations on a rigid rod and the modeled mobile robotic arm are performed to verify the feasibility and time-efficiency of proposed method. Numerical results about the time consuming for different degrees of freedom illustrate that our method scales well with dimension.

Model predictive control (MPC) has been used widely in power electronics due to its simple concept, fast dynamic response, and good reference tracking. However, it suffers from parametric uncertainties, since it directly relies on the mathematical model of the system to predict the optimal switching states to be used at the next sampling time. As a result, uncertain parameters lead to an ill-designed MPC. Thus, this paper offers a model-free control strategy on the basis of artificial neural networks (ANNs), for mitigating the effects of parameter mismatching while having a little negative impact on the inverter's performance. This method includes two related stages. First, MPC is used as an expert to control the studied converter in order to provide a dataset, while, in the second stage, the obtained dataset is utilized to train the proposed ANN. The case study herein is based on a four-level three-cell flying capacitor inverter. In this study, MATLAB/Simulink is used to simulate the performance of the proposed method, taking into account various operating conditions. Afterward, the simulation results are reported in comparison with the conventional MPC scheme, demonstrating the superior performance of the proposed control strategy in terms of robustness against parameters mismatch and low total harmonic distortion (THD), especially when changes occur in the system parameters, compared to the conventional MPC. Furthermore, the experimental validation of the proposed method is provided based on the Hardware-in-the-Loop (HIL) simulation using the C2000TM-microcontrollerLaunchPadXL TMS320F28379D kit, demonstrating the applicability of the ANN-based control strategy to be implemented on a DSP controller.

Knowledge graphs store a large number of factual triples while they are still incomplete, inevitably. The previous knowledge graph completion (KGC) models predict missing links between entities merely relying on fact-view data, ignoring the valuable commonsense knowledge. The previous knowledge graph embedding (KGE) techniques suffer from invalid negative sampling and the uncertainty of fact-view link prediction, limiting KGC's performance. To address the above challenges, we propose a novel and scalable Commonsense-Aware Knowledge Embedding (CAKE) framework to automatically extract commonsense from factual triples with entity concepts. The generated commonsense augments effective self-supervision to facilitate both high-quality negative sampling (NS) and joint commonsense and fact-view link prediction. Experimental results on the KGC task demonstrate that assembling our framework could enhance the performance of the original KGE models, and the proposed commonsense-aware NS module is superior to other NS techniques. Besides, our proposed framework could be easily adaptive to various KGE models and explain the predicted results.

The dynamic response of the legged robot locomotion is non-Lipschitz and can be stochastic due to environmental uncertainties. To test, validate, and characterize the safety performance of legged robots, existing solutions on observed and inferred risk can be incomplete and sampling inefficient. Some formal verification methods suffer from the model precision and other surrogate assumptions. In this paper, we propose a scenario sampling based testing framework that characterizes the overall safety performance of a legged robot by specifying (i) where (in terms of a set of states) the robot is potentially safe, and (ii) how safe the robot is within the specified set. The framework can also help certify the commercial deployment of the legged robot in real-world environment along with human and compare safety performance among legged robots with different mechanical structures and dynamic properties. The proposed framework is further deployed to evaluate a group of state-of-the-art legged robot locomotion controllers from various model-based, deep neural network involved, and reinforcement learning based methods in the literature. Among a series of intended work domains of the studied legged robots (e.g. tracking speed on sloped surface, with abrupt changes on demanded velocity, and against adversarial push-over disturbances), we show that the method can adequately capture the overall safety characterization and the subtle performance insights. Many of the observed safety outcomes, to the best of our knowledge, have never been reported by the existing work in the legged robot literature.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司