亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this study, we demonstrate that the norm test and inner product/orthogonality test presented in \cite{Bol18} are equivalent in terms of the convergence rates associated with Stochastic Gradient Descent (SGD) methods if $\epsilon^2=\theta^2+\nu^2$ with specific choices of $\theta$ and $\nu$. Here, $\epsilon$ controls the relative statistical error of the norm of the gradient while $\theta$ and $\nu$ control the relative statistical error of the gradient in the direction of the gradient and in the direction orthogonal to the gradient, respectively. Furthermore, we demonstrate that the inner product/orthogonality test can be as inexpensive as the norm test in the best case scenario if $\theta$ and $\nu$ are optimally selected, but the inner product/orthogonality test will never be more computationally affordable than the norm test if $\epsilon^2=\theta^2+\nu^2$. Finally, we present two stochastic optimization problems to illustrate our results.

相關內容

隨機梯度下降,按照數據生成分布抽取m個樣本,通過計算他們梯度的平均值來更新梯度。

This study addresses a class of linear mixed-integer programming (MILP) problems that involve uncertainty in the objective function parameters. The parameters are assumed to form a random vector, whose probability distribution can only be observed through a finite training data set. Unlike most of the related studies in the literature, we also consider uncertainty in the underlying data set. The data uncertainty is described by a set of linear constraints for each random sample, and the uncertainty in the distribution (for a fixed realization of data) is defined using a type-1 Wasserstein ball centered at the empirical distribution of the data. The overall problem is formulated as a three-level distributionally robust optimization (DRO) problem. First, we prove that the three-level problem admits a single-level MILP reformulation, if the class of loss functions is restricted to biaffine functions. Secondly, it turns out that for several particular forms of data uncertainty, the outlined problem can be solved reasonably fast by leveraging the nominal MILP problem. Finally, we conduct a computational study, where the out-of-sample performance of our model and computational complexity of the proposed MILP reformulation are explored numerically for several application domains.

Advances in next-generation sequencing technology have enabled the high-throughput profiling of metagenomes and accelerated the microbiome study. Recently, there has been a rise in quantitative studies that aim to decipher the microbiome co-occurrence network and its underlying community structure based on metagenomic sequence data. Uncovering the complex microbiome community structure is essential to understanding the role of the microbiome in disease progression and susceptibility. Taxonomic abundance data generated from metagenomic sequencing technologies are high-dimensional and compositional, suffering from uneven sampling depth, over-dispersion, and zero-inflation. These characteristics often challenge the reliability of the current methods for microbiome community detection. To this end, we propose a Bayesian stochastic block model to study the microbiome co-occurrence network based on the recently developed modified centered-log ratio transformation tailored for microbiome data analysis. Our model allows us to incorporate taxonomic tree information using a Markov random field prior. The model parameters are jointly inferred by using Markov chain Monte Carlo sampling techniques. Our simulation study showed that the proposed approach performs better than competing methods even when taxonomic tree information is non-informative. We applied our approach to a real urinary microbiome dataset from postmenopausal women, the first time the urinary microbiome co-occurrence network structure has been studied. In summary, this statistical methodology provides a new tool for facilitating advanced microbiome studies.

We develop a new continuous-time stochastic gradient descent method for optimizing over the stationary distribution of stochastic differential equation (SDE) models. The algorithm continuously updates the SDE model's parameters using an estimate for the gradient of the stationary distribution. The gradient estimate is simultaneously updated using forward propagation of the SDE state derivatives, asymptotically converging to the direction of steepest descent. We rigorously prove convergence of the online forward propagation algorithm for linear SDE models (i.e., the multi-dimensional Ornstein-Uhlenbeck process) and present its numerical results for nonlinear examples. The proof requires analysis of the fluctuations of the parameter evolution around the direction of steepest descent. Bounds on the fluctuations are challenging to obtain due to the online nature of the algorithm (e.g., the stationary distribution will continuously change as the parameters change). We prove bounds for the solutions of a new class of Poisson partial differential equations (PDEs), which are then used to analyze the parameter fluctuations in the algorithm. Our algorithm is applicable to a range of mathematical finance applications involving statistical calibration of SDE models and stochastic optimal control for long time horizons where ergodicity of the data and stochastic process is a suitable modeling framework. Numerical examples explore these potential applications, including learning a neural network control for high-dimensional optimal control of SDEs and training stochastic point process models of limit order book events.

The numerical solution of continuum damage mechanics (CDM) problems suffers from critical points during the material softening stage, and consequently existing iterative solvers are subject to a trade-off between computational expense and solution accuracy. Displacement-controlled arc-length methods were developed to address these challenges, but are currently applicable only to geometrically non-linear problems. In this work, we present a novel displacement-controlled arc-length (DAL) method for CDM problems in both local damage and non-local gradient damage versions. The analytical tangent matrix is derived for the DAL solver in both of the local and the non-local models. In addition, several consistent and non-consistent implementation algorithms are proposed, implemented, and evaluated. Unlike existing force-controlled arc-length solvers that monolithically scale the external force vector, the proposed method treats the external force vector as an independent variable and determines the position of the system on the equilibrium path based on all the nodal variations of the external force vector. Such a flexible approach renders the proposed solver to be substantially more efficient and versatile than existing solvers used in CDM problems. The considerable advantages of the proposed DAL algorithm are demonstrated against several benchmark 1D problems with sharp snap-backs and 2D examples with various boundary conditions and loading scenarios, where the proposed method drastically outperforms existing conventional approaches in terms of accuracy, computational efficiency, and the ability to predict the complete equilibrium path including all critical points.

Machine learning techniques, in particular the so-called normalizing flows, are becoming increasingly popular in the context of Monte Carlo simulations as they can effectively approximate target probability distributions. In the case of lattice field theories (LFT) the target distribution is given by the exponential of the action. The common loss function's gradient estimator based on the "reparametrization trick" requires the calculation of the derivative of the action with respect to the fields. This can present a significant computational cost for complicated, non-local actions like e.g. fermionic action in QCD. In this contribution, we propose an estimator for normalizing flows based on the REINFORCE algorithm that avoids this issue. We apply it to two dimensional Schwinger model with Wilson fermions at criticality and show that it is up to ten times faster in terms of the wall-clock time as well as requiring up to $30\%$ less memory than the reparameterization trick estimator. It is also more numerically stable allowing for single precision calculations and the use of half-float tensor cores. We present an in-depth analysis of the origins of those improvements. We believe that these benefits will appear also outside the realm of the LFT, in each case where the target probability distribution is computationally intensive.

We review common situations in Bayesian latent variable models where the prior distribution that a researcher specifies differs from the prior distribution used during estimation. These situations can arise from the positive definite requirement on correlation matrices, from sign indeterminacy of factor loadings, and from order constraints on threshold parameters. The issue is especially problematic for reproducibility and for model checks that involve prior distributions, including prior predictive assessment and Bayes factors. In these cases, one might be assessing the wrong model, casting doubt on the relevance of the results. The most straightforward solution to the issue sometimes involves use of informative prior distributions. We explore other solutions and make recommendations for practice.

In the context of Discontinuous Galerkin methods, we study approximations of nonlinear variational problems associated with convex energies. We propose element-wise nonconforming finite element methods to discretize the continuous minimisation problem. Using $\Gamma$-convergence arguments we show that the discrete minimisers converge to the unique minimiser of the continuous problem as the mesh parameter tends to zero, under the additional contribution of appropriately defined penalty terms at the level of the discrete energies. We finally substantiate the feasibility of our methods by numerical examples.

In this article, we present a novel data assimilation strategy in pore-scale imaging and demonstrate that this makes it possible to robustly address reactive inverse problems incorporating Uncertainty Quantification (UQ). Pore-scale modeling of reactive flow offers a valuable opportunity to investigate the evolution of macro-scale properties subject to dynamic processes. Yet, they suffer from imaging limitations arising from the associated X-ray microtomography (X-ray microCT) process, which induces discrepancies in the properties estimates. Assessment of the kinetic parameters also raises challenges, as reactive coefficients are critical parameters that can cover a wide range of values. We account for these two issues and ensure reliable calibration of pore-scale modeling, based on dynamical microCT images, by integrating uncertainty quantification in the workflow. The present method is based on a multitasking formulation of reactive inverse problems combining data-driven and physics-informed techniques in calcite dissolution. This allows quantifying morphological uncertainties on the porosity field and estimating reactive parameter ranges through prescribed PDE models with a latent concentration field and dynamical microCT. The data assimilation strategy relies on sequential reinforcement incorporating successively additional PDE constraints. We guarantee robust and unbiased uncertainty quantification by straightforward adaptive weighting of Bayesian Physics-Informed Neural Networks (BPINNs), ensuring reliable micro-porosity changes during geochemical transformations. We demonstrate successful Bayesian Inference in 1D+Time and 2D+Time calcite dissolution based on synthetic microCT images with meaningful posterior distribution on the reactive parameters and dimensionless numbers.

In this work, we prove uniform continuity bounds for entropic quantities related to the sandwiched R\'enyi divergences such as the sandwiched R\'enyi conditional entropy. We follow three different approaches: The first one is the axiomatic approach, which exploits the sub-/ superadditivity and joint concavity/ convexity of the exponential of the divergence. In our second approach, termed the "operator space approach", we express the entropic measures as norms and utilize their properties for establishing the bounds. These norms draw inspiration from interpolation space norms. We not only demonstrate the norm properties solely relying on matrix analysis tools but also extend their applicability to a context that holds relevance in resource theories. By this, we extend the strategies of Marwah and Dupuis as well as Beigi and Goodarzi employed in the sandwiched R\'enyi conditional entropy context. Finally, we merge the approaches into a mixed approach that has some advantageous properties and then discuss in which regimes each bound performs best. Our results improve over the previous best continuity bounds or sometimes even give the first continuity bounds available. In a separate contribution, we use the ALAAF method, developed in a previous article by some of the authors, to study the stability of approximate quantum Markov chains.

Accurately estimating parameters in complex nonlinear systems is crucial across scientific and engineering fields. We present a novel approach for parameter estimation using a neural network with the Huber loss function. This method taps into deep learning's abilities to uncover parameters governing intricate behaviors in nonlinear equations. We validate our approach using synthetic data and predefined functions that model system dynamics. By training the neural network with noisy time series data, it fine-tunes the Huber loss function to converge to accurate parameters. We apply our method to damped oscillators, Van der Pol oscillators, Lotka-Volterra systems, and Lorenz systems under multiplicative noise. The trained neural network accurately estimates parameters, evident from closely matching latent dynamics. Comparing true and estimated trajectories visually reinforces our method's precision and robustness. Our study underscores the Huber loss-guided neural network as a versatile tool for parameter estimation, effectively uncovering complex relationships in nonlinear systems. The method navigates noise and uncertainty adeptly, showcasing its adaptability to real-world challenges.

北京阿比特科技有限公司