亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce, motivate and study $\varepsilon$-almost collision-flat (ACFU) universal hash functions $f:\mathcal X\times\mathcal S\to\mathcal A$. Their main property is that the number of collisions in any given value is bounded. Each $\varepsilon$-ACFU hash function is an $\varepsilon$-almost universal (AU) hash function, and every $\varepsilon$-almost strongly universal (ASU) hash function is an $\varepsilon$-ACFU hash function. We study how the size of the seed set $\mathcal S$ depends on $\varepsilon,|\mathcal X|$ and $|\mathcal A|$. Depending on how these parameters are interrelated, seed-minimizing ACFU hash functions are equivalent to mosaics of balanced incomplete block designs (BIBDs) or to duals of mosaics of quasi-symmetric block designs; in a third case, mosaics of transversal designs and nets yield seed-optimal ACFU hash functions, but a full characterization is missing. By either extending $\mathcal S$ or $\mathcal X$, it is possible to obtain an $\varepsilon$-ACFU hash function from an $\varepsilon$-AU hash function or an $\varepsilon$-ASU hash function, generalizing the construction of mosaics of designs from a given resolvable design (Gnilke, Greferath, Pav{\v c}evi\'c, Des. Codes Cryptogr. 86(1)). The concatenation of an ASU and an ACFU hash function again yields an ACFU hash function. Finally, we motivate ACFU hash functions by their applicability in privacy amplification.

相關內容

We propose a threshold-type algorithm to the $L^2$-gradient flow of the Canham-Helfrich functional generalized to $\mathbb{R}^N$. The algorithm to the Willmore flow is derived as a special case in $\mathbb{R}^2$ or $\mathbb{R}^3$. This algorithm is constructed based on an asymptotic expansion of the solution to the initial value problem for a fourth order linear parabolic partial differential equation whose initial data is the indicator function on the compact set $\Omega_0$. The crucial points are to prove that the boundary $\partial\Omega_1$ of the new set $\Omega_1$ generated by our algorithm is included in $O(t)$-neighborhood from $\partial\Omega_0$ for small time $t>0$ and to show that the derivative of the threshold function in the normal direction for $\partial\Omega_0$ is far from zero in the small time interval. Finally, numerical examples of planar curves governed by the Willmore flow are provided by using our threshold-type algorithm.

For a graph $ G = (V, E) $ with a vertex set $ V $ and an edge set $ E $, a function $ f : V \rightarrow \{0, 1, 2, . . . , diam(G)\} $ is called a \emph{broadcast} on $ G $. For each vertex $ u \in V $, if there exists a vertex $ v $ in $ G $ (possibly, $ u = v $) such that $ f (v) > 0 $ and $ d(u, v) \leq f (v) $, then $ f $ is called a dominating broadcast on $ G $. The cost of the dominating broadcast $f$ is the quantity $ \sum_{v\in V}f(v) $. The minimum cost of a dominating broadcast is the broadcast domination number of $G$, denoted by $ \gamma_{b}(G) $. A multipacking is a set $ S \subseteq V $ in a graph $ G = (V, E) $ such that for every vertex $ v \in V $ and for every integer $ r \geq 1 $, the ball of radius $ r $ around $ v $ contains at most $ r $ vertices of $ S $, that is, there are at most $ r $ vertices in $ S $ at a distance at most $ r $ from $ v $ in $ G $. The multipacking number of $ G $ is the maximum cardinality of a multipacking of $ G $ and is denoted by $ mp(G) $. We show that, for any connected chordal graph $G$, $\gamma_{b}(G)\leq \big\lceil{\frac{3}{2} mp(G)\big\rceil}$. We also show that $\gamma_b(G)-mp(G)$ can be arbitrarily large for connected chordal graphs by constructing an infinite family of connected chordal graphs such that the ratio $\gamma_b(G)/mp(G)=10/9$, with $mp(G)$ arbitrarily large. Moreover, we show that $\gamma_{b}(G)\leq \big\lfloor{\frac{3}{2} mp(G)+2\delta\big\rfloor} $ holds for all $\delta$-hyperbolic graphs. In addition, we provide a polynomial-time algorithm to construct a multipacking of a $\delta$-hyperbolic graph $G$ of size at least $ \big\lceil{\frac{2mp(G)-4\delta}{3} \big\rceil} $.

In this paper, a new two-relaxation-time regularized (TRT-R) lattice Boltzmann (LB) model for convection-diffusion equation (CDE) with variable coefficients is proposed. Within this framework, we first derive a TRT-R collision operator by constructing a new regularized procedure through the high-order Hermite expansion of non-equilibrium. Then a first-order discrete-velocity form of discrete source term is introduced to improve the accuracy of the source term. Finally and most importantly, a new first-order space-derivative auxiliary term is proposed to recover the correct CDE with variable coefficients. To evaluate this model, we simulate a classic benchmark problem of the rotating Gaussian pulse. The results show that our model has better accuracy, stability and convergence than other popular LB models, especially in the case of a large time step.

We present algorithms for the computation of $\varepsilon$-coresets for $k$-median clustering of point sequences in $\mathbb{R}^d$ under the $p$-dynamic time warping (DTW) distance. Coresets under DTW have not been investigated before, and the analysis is not directly accessible to existing methods as DTW is not a metric. The three main ingredients that allow our construction of coresets are the adaptation of the $\varepsilon$-coreset framework of sensitivity sampling, bounds on the VC dimension of approximations to the range spaces of balls under DTW, and new approximation algorithms for the $k$-median problem under DTW. We achieve our results by investigating approximations of DTW that provide a trade-off between the provided accuracy and amenability to known techniques. In particular, we observe that given $n$ curves under DTW, one can directly construct a metric that approximates DTW on this set, permitting the use of the wealth of results on metric spaces for clustering purposes. The resulting approximations are the first with polynomial running time and achieve a very similar approximation factor as state-of-the-art techniques. We apply our results to produce a practical algorithm approximating $(k,\ell)$-median clustering under DTW.

The existence of $q$-ary linear complementary pairs (LCPs) of codes with $q> 2$ has been completely characterized so far. This paper gives a characterization for the existence of binary LCPs of codes. As a result, we solve an open problem proposed by Carlet $et~al.$ (IEEE Trans. Inf. Theory 65(3): 1694-1704, 2019) and a conjecture proposed by Choi $et~al.$ (Cryptogr. Commun. 15(2): 469-486, 2023).

The weighted Euclidean norm $\|x\|_w$ of a vector $x\in \mathbb{R}^d$ with weights $w\in \mathbb{R}^d$ is the Euclidean norm where the contribution of each dimension is scaled by a given weight. Approaches to dimensionality reduction that satisfy the Johnson-Lindenstrauss (JL) lemma can be easily adapted to the weighted Euclidean distance if weights are fixed: it suffices to scale each dimension of the input vectors according to the weights, and then apply any standard approach. However, this is not the case when weights are unknown during the dimensionality reduction or might dynamically change. We address this issue by providing an approach that maps vectors into a smaller complex vector space, but still allows to satisfy a JL-like property for the weighted Euclidean distance when weights are revealed. Specifically, let $\Delta\geq 1, \epsilon \in (0,1)$ be arbitrary values, and let $S\subset \mathbb{R}^d$ be a set of $n$ vectors. We provide a weight-oblivious linear map $g:\mathbb{R}^d \rightarrow \mathbb{C}^k$, with $k=\Theta(\epsilon^{-2}\Delta^4 \ln{n})$, to reduce vectors in $S$, and an estimator $\rho: \mathbb{C}^k \times \mathbb{R}^d \rightarrow \mathbb R$ with the following property. For any $x\in S$, the value $\rho(g(x), w)$ is an unbiased estimate of $\|x\|^2_w$, and $\rho$ is computed from the reduced vector $g(x)$ and the weights $w$. Moreover, the error of the estimate $\rho((g(x), w)$ depends on the norm distortion due to weights and parameter $\Delta$: for any $x\in S$, the estimate has a multiplicative error $\epsilon$ if $\|x\|_2\|w\|_2/\|x\|_w\leq \Delta$, otherwise the estimate has an additive $\epsilon \|x\|^2_2\|w\|^2_2/\Delta^2$ error. Finally, we consider the estimation of weighted Euclidean norms in streaming settings: we show how to estimate the weighted norm when the weights are provided either after or concurrently with the input vector.

A class of (block) rational Krylov subspace based projection method for solving large-scale continuous-time algebraic Riccati equation (CARE) $0 = \mathcal{R}(X) := A^HX + XA + C^HC - XBB^HX$ with a large, sparse $A$ and $B$ and $C$ of full low rank is proposed. The CARE is projected onto a block rational Krylov subspace $\mathcal{K}_j$ spanned by blocks of the form $(A^H+ s_kI)C^H$ for some shifts $s_k, k = 1, \ldots, j.$ The considered projections do not need to be orthogonal and are built from the matrices appearing in the block rational Arnoldi decomposition associated to $\mathcal{K}_j.$ The resulting projected Riccati equation is solved for the small square Hermitian $Y_j.$ Then the Hermitian low-rank approximation $X_j = Z_jY_jZ_j^H$ to $X$ is set up where the columns of $Z_j$ span $\mathcal{K}_j.$ The residual norm $\|R(X_j )\|_F$ can be computed efficiently via the norm of a readily available $2p \times 2p$ matrix. We suggest to reduce the rank of the approximate solution $X_j$ even further by truncating small eigenvalues from $X_j.$ This truncated approximate solution can be interpreted as the solution of the Riccati residual projected to a subspace of $\mathcal{K}_j.$ This gives us a way to efficiently evaluate the norm of the resulting residual. Numerical examples are presented.

A class of graphs $\mathcal{G}$ is $\chi$-bounded if there exists a function $f$ such that $\chi(G) \leq f(\omega(G))$ for each graph $G \in \mathcal{G}$, where $\chi(G)$ and $\omega(G)$ are the chromatic and clique number of $G$, respectively. The square of a graph $G$, denoted as $G^2$, is the graph with the same vertex set as $G$ in which two vertices are adjacent when they are at a distance at most two in $G$. In this paper, we study the $\chi$-boundedness of squares of bipartite graphs and its subclasses. Note that the class of squares of graphs, in general, admit a quadratic $\chi$-binding function. Moreover there exist bipartite graphs $B$ for which $\chi\left(B^2\right)$ is $\Omega\left(\frac{\left(\omega\left(B^2\right)\right)^2 }{\log \omega\left(B^2\right)}\right)$. We first ask the following question: "What sub-classes of bipartite graphs have a linear $\chi$-binding function?" We focus on the class of convex bipartite graphs and prove the following result: for any convex bipartite graph $G$, $\chi\left(G^2\right) \leq \frac{3 \omega\left(G^2\right)}{2}$. Our proof also yields a polynomial-time $3/2$-approximation algorithm for coloring squares of convex bipartite graphs. We then introduce a notion called "partite testable properties" for the squares of bipartite graphs. We say that a graph property $P$ is partite testable for the squares of bipartite graphs if for a bipartite graph $G=(A,B,E)$, whenever the induced subgraphs $G^2[A]$ and $G^2[B]$ satisfies the property $P$ then $G^2$ also satisfies the property $P$. Here, we discuss whether some of the well-known graph properties like perfectness, chordality, (anti-hole)-freeness, etc. are partite testable or not. As a consequence, we prove that the squares of biconvex bipartite graphs are perfect.

The problem of packing as many subgraphs isomorphic to $H \in \mathcal H$ as possible in a graph for a class $\mathcal H$ of graphs is well studied in the literature. Both vertex-disjoint and edge-disjoint versions are known to be NP-complete for $H$ that contains at least three vertices and at least three edges, respectively. In this paper, we consider ``list variants'' of these problems: Given a graph $G$, an integer $k$, and a collection $\mathcal L_{\mathcal H}$ of subgraphs of $G$ isomorphic to some $H \in \mathcal H$, the goal is to compute $k$ subgraphs in $\mathcal L_{\mathcal H}$ that are pairwise vertex- or edge-disjoint. We show several positive and negative results, focusing on classes of sparse graphs, such as bounded-degree graphs, planar graphs, and bounded-treewidth graphs.

In 2009, Shur published the following conjecture: Let $L$ be a power-free language and let $e(L)\subseteq L$ be the set of words of $L$ that can be extended to a bi-infinite word respecting the given power-freeness. If $u, v \in e(L)$ then $uwv \in e(L)$ for some word $w$. Let $L_{k,\alpha}$ denote an $\alpha$-power free language over an alphabet with $k$ letters, where $\alpha$ is a positive rational number and $k$ is positive integer. We prove the conjecture for the languages $L_{k,\alpha}$, where $\alpha\geq 5$ and $k\geq 3$.

北京阿比特科技有限公司