亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study a streamable attention-based encoder-decoder model in which either the decoder, or both the encoder and decoder, operate on pre-defined, fixed-size windows called chunks. A special end-of-chunk (EOC) symbol advances from one chunk to the next chunk, effectively replacing the conventional end-of-sequence symbol. This modification, while minor, situates our model as equivalent to a transducer model that operates on chunks instead of frames, where EOC corresponds to the blank symbol. We further explore the remaining differences between a standard transducer and our model. Additionally, we examine relevant aspects such as long-form speech generalization, beam size, and length normalization. Through experiments on Librispeech and TED-LIUM-v2, and by concatenating consecutive sequences for long-form trials, we find that our streamable model maintains competitive performance compared to the non-streamable variant and generalizes very well to long-form speech.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 代碼 · 模型評估 · Microsoft Excel · PAR ·
2023 年 10 月 30 日

Imagine a developer who can only change their last line of code, how often would they have to start writing a function from scratch before it is correct? Auto-regressive models for code generation from natural language have a similar limitation: they do not easily allow reconsidering earlier tokens generated. We introduce CodeFusion, a pre-trained diffusion code generation model that addresses this limitation by iteratively denoising a complete program conditioned on the encoded natural language. We evaluate CodeFusion on the task of natural language to code generation for Bash, Python, and Microsoft Excel conditional formatting (CF) rules. Experiments show that CodeFusion (75M parameters) performs on par with state-of-the-art auto-regressive systems (350M-175B parameters) in top-1 accuracy and outperforms them in top-3 and top-5 accuracy due to its better balance in diversity versus quality.

We present an oracle-efficient relaxation for the adversarial contextual bandits problem, where the contexts are sequentially drawn i.i.d from a known distribution and the cost sequence is chosen by an online adversary. Our algorithm has a regret bound of $O(T^{\frac{2}{3}}(K\log(|\Pi|))^{\frac{1}{3}})$ and makes at most $O(K)$ calls per round to an offline optimization oracle, where $K$ denotes the number of actions, $T$ denotes the number of rounds and $\Pi$ denotes the set of policies. This is the first result to improve the prior best bound of $O((TK)^{\frac{2}{3}}(\log(|\Pi|))^{\frac{1}{3}})$ as obtained by Syrgkanis et al. at NeurIPS 2016, and the first to match the original bound of Langford and Zhang at NeurIPS 2007 which was obtained for the stochastic case.

Simultaneous sequence generation is a pivotal task for real-time scenarios, such as streaming speech recognition, simultaneous machine translation and simultaneous speech translation, where the target sequence is generated while receiving the source sequence. The crux of achieving high-quality generation with low latency lies in identifying the optimal moments for generating, accomplished by learning a mapping between the source and target sequences. However, existing methods often rely on task-specific heuristics for different sequence types, limiting the model's capacity to adaptively learn the source-target mapping and hindering the exploration of multi-task learning for various simultaneous tasks. In this paper, we propose a unified segment-to-segment framework (Seg2Seg) for simultaneous sequence generation, which learns the mapping in an adaptive and unified manner. During the process of simultaneous generation, the model alternates between waiting for a source segment and generating a target segment, making the segment serve as the natural bridge between the source and target. To accomplish this, Seg2Seg introduces a latent segment as the pivot between source to target and explores all potential source-target mappings via the proposed expectation training, thereby learning the optimal moments for generating. Experiments on multiple simultaneous generation tasks demonstrate that Seg2Seg achieves state-of-the-art performance and exhibits better generality across various tasks.

Plug-and-play (PnP) prior is a well-known class of methods for solving imaging inverse problems by computing fixed-points of operators combining physical measurement models and learned image denoisers. While PnP methods have been extensively used for image recovery with known measurement operators, there is little work on PnP for solving blind inverse problems. We address this gap by presenting a new block-coordinate PnP (BC-PnP) method that efficiently solves this joint estimation problem by introducing learned denoisers as priors on both the unknown image and the unknown measurement operator. We present a new convergence theory for BC-PnP compatible with blind inverse problems by considering nonconvex data-fidelity terms and expansive denoisers. Our theory analyzes the convergence of BC-PnP to a stationary point of an implicit function associated with an approximate minimum mean-squared error (MMSE) denoiser. We numerically validate our method on two blind inverse problems: automatic coil sensitivity estimation in magnetic resonance imaging (MRI) and blind image deblurring. Our results show that BC-PnP provides an efficient and principled framework for using denoisers as PnP priors for jointly estimating measurement operators and images.

Label embedding is a framework for multiclass classification problems where each label is represented by a distinct vector of some fixed dimension, and training involves matching model output to the vector representing the correct label. While label embedding has been successfully applied in extreme classification and zero-shot learning, and offers both computational and statistical advantages, its theoretical foundations remain poorly understood. This work presents an analysis of label embedding in the context of extreme multiclass classification, where the number of classes $C$ is very large. We present an excess risk bound that reveals a trade-off between computational and statistical efficiency, quantified via the coherence of the embedding matrix. We further show that under the Massart noise condition, the statistical penalty for label embedding vanishes with sufficiently low coherence. Our analysis supports an algorithm that is simple, scalable, and easily parallelizable, and experimental results demonstrate its effectiveness in large-scale applications.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

To retrieve more relevant, appropriate and useful documents given a query, finding clues about that query through the text is crucial. Recent deep learning models regard the task as a term-level matching problem, which seeks exact or similar query patterns in the document. However, we argue that they are inherently based on local interactions and do not generalise to ubiquitous, non-consecutive contextual relationships.In this work, we propose a novel relevance matching model based on graph neural networks to leverage the document-level word relationships for ad-hoc retrieval. In addition to the local interactions, we explicitly incorporate all contexts of a term through the graph-of-word text format. Matching patterns can be revealed accordingly to provide a more accurate relevance score. Our approach significantly outperforms strong baselines on two ad-hoc benchmarks. We also experimentally compare our model with BERT and show our ad-vantages on long documents.

Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

While existing machine learning models have achieved great success for sentiment classification, they typically do not explicitly capture sentiment-oriented word interaction, which can lead to poor results for fine-grained analysis at the snippet level (a phrase or sentence). Factorization Machine provides a possible approach to learning element-wise interaction for recommender systems, but they are not directly applicable to our task due to the inability to model contexts and word sequences. In this work, we develop two Position-aware Factorization Machines which consider word interaction, context and position information. Such information is jointly encoded in a set of sentiment-oriented word interaction vectors. Compared to traditional word embeddings, SWI vectors explicitly capture sentiment-oriented word interaction and simplify the parameter learning. Experimental results show that while they have comparable performance with state-of-the-art methods for document-level classification, they benefit the snippet/sentence-level sentiment analysis.

北京阿比特科技有限公司