亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite the remarkable performance of video-based large language models (LLMs), their adversarial threat remains unexplored. To fill this gap, we propose the first adversarial attack tailored for video-based LLMs by crafting flow-based multi-modal adversarial perturbations on a small fraction of frames within a video, dubbed FMM-Attack. Extensive experiments show that our attack can effectively induce video-based LLMs to generate incorrect answers when videos are added with imperceptible adversarial perturbations. Intriguingly, our FMM-Attack can also induce garbling in the model output, prompting video-based LLMs to hallucinate. Overall, our observations inspire a further understanding of multi-modal robustness and safety-related feature alignment across different modalities, which is of great importance for various large multi-modal models. Our code is available at //github.com/THU-Kingmin/FMM-Attack.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Extensibility · HTTPS · 邊界框 · Processing(編程語言) ·
2024 年 5 月 2 日

Large-scale Text-to-Image (T2I) diffusion models demonstrate significant generation capabilities based on textual prompts. Based on the T2I diffusion models, text-guided image editing research aims to empower users to manipulate generated images by altering the text prompts. However, existing image editing techniques are prone to editing over unintentional regions that are beyond the intended target area, primarily due to inaccuracies in cross-attention maps. To address this problem, we propose Localization-aware Inversion (LocInv), which exploits segmentation maps or bounding boxes as extra localization priors to refine the cross-attention maps in the denoising phases of the diffusion process. Through the dynamic updating of tokens corresponding to noun words in the textual input, we are compelling the cross-attention maps to closely align with the correct noun and adjective words in the text prompt. Based on this technique, we achieve fine-grained image editing over particular objects while preventing undesired changes to other regions. Our method LocInv, based on the publicly available Stable Diffusion, is extensively evaluated on a subset of the COCO dataset, and consistently obtains superior results both quantitatively and qualitatively.The code will be released at //github.com/wangkai930418/DPL

Error correcting codes~(ECCs) are indispensable for reliable transmission in communication systems. The recent advancements in deep learning have catalyzed the exploration of ECC decoders based on neural networks. Among these, transformer-based neural decoders have achieved state-of-the-art decoding performance. In this paper, we propose a novel Cross-attention Message-Passing Transformer~(CrossMPT). CrossMPT iteratively updates two types of input vectors (i.e., magnitude and syndrome vectors) using two masked cross-attention blocks. The mask matrices in these cross-attention blocks are determined by the code's parity-check matrix that delineates the relationship between magnitude and syndrome vectors. Our experimental results show that CrossMPT significantly outperforms existing neural network-based decoders, particularly in decoding low-density parity-check codes. Notably, CrossMPT also achieves a significant reduction in computational complexity, achieving over a 50\% decrease in its attention layers compared to the original transformer-based decoder, while retaining the computational complexity of the remaining layers.

Context: Regulatory acts are a challenging source when eliciting, interpreting, and analyzing requirements. Requirements engineers often need to involve legal experts who, however, may often not be available. This raises the need for approaches to regulatory Requirements Engineering (RE) covering and integrating both legal and engineering perspectives. Problem: Regulatory RE approaches need to capture and reflect both the elementary concepts and relationships from a legal perspective and their seamless transition to concepts used to specify software requirements. No existing approach considers explicating and managing legal domain knowledge and engineering-legal coordination. Method: We conducted focus group sessions with legal researchers to identify the core challenges to establishing a regulatory RE approach. Based on our findings, we developed a candidate solution and conducted a first conceptual validation to assess its feasibility. Results: We introduce the first version of our Artifact Model for Regulatory Requirements Engineering (AM4RRE) and its conceptual foundation. It provides a blueprint for applying legal (modelling) concepts and well-established RE concepts. Our initial results suggest that artifact-centric RE can be applied to managing legal domain knowledge and engineering-legal coordination. Conclusions: The focus groups that served as a basis for building our model and the results from the expert validation both strengthen our confidence that we already provide a valuable basis for systematically integrating legal concepts into RE. This overcomes contemporary challenges to regulatory RE and serves as a basis for exposure to critical discussions in the community before continuing with the development of tool-supported extensions and large-scale empirical evaluations in practice.

This paper presents a comprehensive exploration of relation extraction utilizing advanced language models, specifically Chain of Thought (CoT) and Graphical Reasoning (GRE) techniques. We demonstrate how leveraging in-context learning with GPT-3.5 can significantly enhance the extraction process, particularly through detailed example-based reasoning. Additionally, we introduce a novel graphical reasoning approach that dissects relation extraction into sequential sub-tasks, improving precision and adaptability in processing complex relational data. Our experiments, conducted on multiple datasets, including manually annotated data, show considerable improvements in performance metrics, underscoring the effectiveness of our methodologies.

Robots interacting with humans must be safe, reactive and adapt online to unforeseen environmental and task changes. Achieving these requirements concurrently is a challenge as interactive planners lack formal safety guarantees, while safe motion planners lack flexibility to adapt. To tackle this, we propose a modular control architecture that generates both safe and reactive motion plans for human-robot interaction by integrating temporal logic-based discrete task level plans with continuous Dynamical System (DS)-based motion plans. We formulate a reactive temporal logic formula that enables users to define task specifications through structured language, and propose a planning algorithm at the task level that generates a sequence of desired robot behaviors while being adaptive to environmental changes. At the motion level, we incorporate control Lyapunov functions and control barrier functions to compute stable and safe continuous motion plans for two types of robot behaviors: (i) complex, possibly periodic motions given by autonomous DS and (ii) time-critical tasks specified by Signal Temporal Logic~(STL). Our methodology is demonstrated on the Franka robot arm performing wiping tasks on a whiteboard and a mannequin that is compliant to human interactions and adaptive to environmental changes.

Adversarial examples are typically optimized with gradient-based attacks. While novel attacks are continuously proposed, each is shown to outperform its predecessors using different experimental setups, hyperparameter settings, and number of forward and backward calls to the target models. This provides overly-optimistic and even biased evaluations that may unfairly favor one particular attack over the others. In this work, we aim to overcome these limitations by proposing AttackBench, i.e., the first evaluation framework that enables a fair comparison among different attacks. To this end, we first propose a categorization of gradient-based attacks, identifying their main components and differences. We then introduce our framework, which evaluates their effectiveness and efficiency. We measure these characteristics by (i) defining an optimality metric that quantifies how close an attack is to the optimal solution, and (ii) limiting the number of forward and backward queries to the model, such that all attacks are compared within a given maximum query budget. Our extensive experimental analysis compares more than 100 attack implementations with a total of over 800 different configurations against CIFAR-10 and ImageNet models, highlighting that only very few attacks outperform all the competing approaches. Within this analysis, we shed light on several implementation issues that prevent many attacks from finding better solutions or running at all. We release AttackBench as a publicly available benchmark, aiming to continuously update it to include and evaluate novel gradient-based attacks for optimizing adversarial examples.

In the field of personalized image generation, the ability to create images preserving concepts has significantly improved. Creating an image that naturally integrates multiple concepts in a cohesive and visually appealing composition can indeed be challenging. This paper introduces "InstantFamily," an approach that employs a novel masked cross-attention mechanism and a multimodal embedding stack to achieve zero-shot multi-ID image generation. Our method effectively preserves ID as it utilizes global and local features from a pre-trained face recognition model integrated with text conditions. Additionally, our masked cross-attention mechanism enables the precise control of multi-ID and composition in the generated images. We demonstrate the effectiveness of InstantFamily through experiments showing its dominance in generating images with multi-ID, while resolving well-known multi-ID generation problems. Additionally, our model achieves state-of-the-art performance in both single-ID and multi-ID preservation. Furthermore, our model exhibits remarkable scalability with a greater number of ID preservation than it was originally trained with.

Matching visible and near-infrared (NIR) images remains a significant challenge in remote sensing image fusion. The nonlinear radiometric differences between heterogeneous remote sensing images make the image matching task even more difficult. Deep learning has gained substantial attention in computer vision tasks in recent years. However, many methods rely on supervised learning and necessitate large amounts of annotated data. Nevertheless, annotated data is frequently limited in the field of remote sensing image matching. To address this challenge, this paper proposes a novel keypoint descriptor approach that obtains robust feature descriptors via a self-supervised matching network. A light-weight transformer network, termed as LTFormer, is designed to generate deep-level feature descriptors. Furthermore, we implement an innovative triplet loss function, LT Loss, to enhance the matching performance further. Our approach outperforms conventional hand-crafted local feature descriptors and proves equally competitive compared to state-of-the-art deep learning-based methods, even amidst the shortage of annotated data.

Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.

To retrieve more relevant, appropriate and useful documents given a query, finding clues about that query through the text is crucial. Recent deep learning models regard the task as a term-level matching problem, which seeks exact or similar query patterns in the document. However, we argue that they are inherently based on local interactions and do not generalise to ubiquitous, non-consecutive contextual relationships.In this work, we propose a novel relevance matching model based on graph neural networks to leverage the document-level word relationships for ad-hoc retrieval. In addition to the local interactions, we explicitly incorporate all contexts of a term through the graph-of-word text format. Matching patterns can be revealed accordingly to provide a more accurate relevance score. Our approach significantly outperforms strong baselines on two ad-hoc benchmarks. We also experimentally compare our model with BERT and show our ad-vantages on long documents.

北京阿比特科技有限公司