亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Research into the detection of human activities from wearable sensors is a highly active field, benefiting numerous applications, from ambulatory monitoring of healthcare patients via fitness coaching to streamlining manual work processes. We present an empirical study that compares 4 different commonly used annotation methods utilized in user studies that focus on in-the-wild data. These methods can be grouped in user-driven, in situ annotations - which are performed before or during the activity is recorded - and recall methods - where participants annotate their data in hindsight at the end of the day. Our study illustrates that different labeling methodologies directly impact the annotations' quality, as well as the capabilities of a deep learning classifier trained with the data respectively. We noticed that in situ methods produce less but more precise labels than recall methods. Furthermore, we combined an activity diary with a visualization tool that enables the participant to inspect and label their activity data. Due to the introduction of such a tool were able to decrease missing annotations and increase the annotation consistency, and therefore the F1-score of the deep learning model by up to 8% (ranging between 82.1 and 90.4% F1-score). Furthermore, we discuss the advantages and disadvantages of the methods compared in our study, the biases they may could introduce and the consequences of their usage on human activity recognition studies and as well as possible solutions.

相關內容

可穿戴設備即直接穿在身上,或是整合到用戶的衣服或配件的一種便攜式設備。可穿戴設備不僅僅是一種硬件設備,更是通過軟件支持以及數據交互、云端交互來實現強大的功能,可穿戴設備將會對我們的生活、感知帶來很大的轉變。

Geometrical approaches for room acoustics simulation have the advantage of requiring limited computational resources while still achieving a high perceptual plausibility. A common approach is using the image source model for direct and early reflections in connection with further simplified models such as a feedback delay network for the diffuse reverberant tail. When recreating real spaces as virtual acoustic environments using room acoustics simulation, the perceptual relevance of individual parameters in the simulation is unclear. Here we investigate the importance of underlying acoustical measurements and technical evaluation methods to obtain high-quality room acoustics simulations in agreement with dummy-head recordings of a real space. We focus on the role of source directivity. The effect of including measured, modelled, and omnidirectional source directivity in room acoustics simulations was assessed in comparison to the measured reference. Technical evaluation strategies to verify and improve the accuracy of various elements in the simulation processing chain from source, the room properties, to the receiver are presented. Perceptual results from an ABX listening experiment with random speech tokens are shown and compared with technical measures for a ranking of simulation approaches.

Most Artificial Intelligence applications are based on supervised machine learning (ML), which ultimately grounds on manually annotated data. The annotation process is often performed in terms of a majority vote and this has been proved to be often problematic, as highlighted by recent studies on the evaluation of ML models. In this article we describe and advocate for a different paradigm, which we call data perspectivism, which moves away from traditional gold standard datasets, towards the adoption of methods that integrate the opinions and perspectives of the human subjects involved in the knowledge representation step of ML processes. Drawing on previous works which inspired our proposal we describe the potential of our proposal for not only the more subjective tasks (e.g. those related to human language) but also to tasks commonly understood as objective (e.g. medical decision making), and present the main advantages of adopting a perspectivist stance in ML, as well as possible disadvantages, and various ways in which such a stance can be implemented in practice. Finally, we share a set of recommendations and outline a research agenda to advance the perspectivist stance in ML.

This paper proposes a methodology for exploring how linguistic behaviour on social media can be used to explore societal reactions to important events such as those that transpired during the SARS CoV2 pandemic. In particular, where spatial and temporal aspects of events are important features. Our methodology consists of grounding spatial-temporal categories in tweet usage trends using time-series analysis and clustering. Salient terms in each category were then identified through qualitative comparative analysis based on scaled f-scores aggregated into hand-coded categories. To exemplify this approach, we conducted a case study on the first wave of the coronavirus in Italy. We used our proposed methodology to explore existing psychological observations which claimed that physical distance from events affects what is communicated about them. We confirmed these findings by showing that the epicentre of the disease and peripheral regions correspond to clear time-series clusters and that those living in the epicentre of the SARS CoV2 outbreak were more focused on solidarity and policy than those from more peripheral regions. Furthermore, we also found that temporal categories corresponded closely to policy changes during the handling of the pandemic.

Arbitrary, inconsistent, or faulty decision-making raises serious concerns, and preventing unfair models is an increasingly important challenge in Machine Learning. Data often reflect past discriminatory behavior, and models trained on such data may reflect bias on sensitive attributes, such as gender, race, or age. One approach to developing fair models is to preprocess the training data to remove the underlying biases while preserving the relevant information, for example, by correcting biased labels. While multiple label noise correction methods are available, the information about their behavior in identifying discrimination is very limited. In this work, we develop an empirical methodology to systematically evaluate the effectiveness of label noise correction techniques in ensuring the fairness of models trained on biased datasets. Our methodology involves manipulating the amount of label noise and can be used with fairness benchmarks but also with standard ML datasets. We apply the methodology to analyze six label noise correction methods according to several fairness metrics on standard OpenML datasets. Our results suggest that the Hybrid Label Noise Correction method achieves the best trade-off between predictive performance and fairness. Clustering-Based Correction can reduce discrimination the most, however, at the cost of lower predictive performance.

The automatic annotation of direct speech (AADS) in written text has been often used in computational narrative understanding. Methods based on either rules or deep neural networks have been explored, in particular for English or German languages. Yet, for French, our target language, not many works exist. Our goal is to create a unified framework to design and evaluate AADS models in French. For this, we consolidated the largest-to-date French narrative dataset annotated with DS per word; we adapted various baselines for sequence labelling or from AADS in other languages; and we designed and conducted an extensive evaluation focused on generalisation. Results show that the task still requires substantial efforts and emphasise characteristics of each baseline. Although this framework could be improved, it is a step further to encourage more research on the topic.

Three-dimensional (3D) object recognition technology is being used as a core technology in advanced technologies such as autonomous driving of automobiles. There are two sets of approaches for 3D object recognition: (i) hand-crafted approaches like Global Orthographic Object Descriptor (GOOD), and (ii) deep learning-based approaches such as MobileNet and VGG. However, it is needed to know which of these approaches works better in an open-ended domain where the number of known categories increases over time, and the system should learn about new object categories using few training examples. In this paper, we first implemented an offline 3D object recognition system that takes an object view as input and generates category labels as output. In the offline stage, instance-based learning (IBL) is used to form a new category and we use K-fold cross-validation to evaluate the obtained object recognition performance. We then test the proposed approach in an online fashion by integrating the code into a simulated teacher test. As a result, we concluded that the approach using deep learning features is more suitable for open-ended fashion. Moreover, we observed that concatenating the hand-crafted and deep learning features increases the classification accuracy.

Dialogue disentanglement aims to group utterances in a long and multi-participant dialogue into threads. This is useful for discourse analysis and downstream applications such as dialogue response selection, where it can be the first step to construct a clean context/response set. Unfortunately, labeling all~\emph{reply-to} links takes quadratic effort w.r.t the number of utterances: an annotator must check all preceding utterances to identify the one to which the current utterance is a reply. In this paper, we are the first to propose a~\textbf{zero-shot} dialogue disentanglement solution. Firstly, we train a model on a multi-participant response selection dataset harvested from the web which is not annotated; we then apply the trained model to perform zero-shot dialogue disentanglement. Without any labeled data, our model can achieve a cluster F1 score of 25. We also fine-tune the model using various amounts of labeled data. Experiments show that with only 10\% of the data, we achieve nearly the same performance of using the full dataset\footnote{Code is released at \url{//github.com/chijames/zero_shot_dialogue_disentanglement}}.

This paper presents new methods for analyzing and evaluating generalized plans that can solve broad classes of related planning problems. Although synthesis and learning of generalized plans has been a longstanding goal in AI, it remains challenging due to fundamental gaps in methods for analyzing the scope and utility of a given generalized plan. This paper addresses these gaps by developing a new conceptual framework along with proof techniques and algorithmic processes for assessing termination and goal-reachability related properties of generalized plans. We build upon classic results from graph theory to decompose generalized plans into smaller components that are then used to derive hierarchical termination arguments. These methods can be used to determine the utility of a given generalized plan, as well as to guide the synthesis and learning processes for generalized plans. We present theoretical as well as empirical results illustrating the scope of this new approach. Our analysis shows that this approach significantly extends the class of generalized plans that can be assessed automatically, thereby reducing barriers in the synthesis and learning of reliable generalized plans.

Medical image segmentation is a fundamental and critical step in many image-guided clinical approaches. Recent success of deep learning-based segmentation methods usually relies on a large amount of labeled data, which is particularly difficult and costly to obtain especially in the medical imaging domain where only experts can provide reliable and accurate annotations. Semi-supervised learning has emerged as an appealing strategy and been widely applied to medical image segmentation tasks to train deep models with limited annotations. In this paper, we present a comprehensive review of recently proposed semi-supervised learning methods for medical image segmentation and summarized both the technical novelties and empirical results. Furthermore, we analyze and discuss the limitations and several unsolved problems of existing approaches. We hope this review could inspire the research community to explore solutions for this challenge and further promote the developments in medical image segmentation field.

A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.

北京阿比特科技有限公司