This paper proposes a methodology for exploring how linguistic behaviour on social media can be used to explore societal reactions to important events such as those that transpired during the SARS CoV2 pandemic. In particular, where spatial and temporal aspects of events are important features. Our methodology consists of grounding spatial-temporal categories in tweet usage trends using time-series analysis and clustering. Salient terms in each category were then identified through qualitative comparative analysis based on scaled f-scores aggregated into hand-coded categories. To exemplify this approach, we conducted a case study on the first wave of the coronavirus in Italy. We used our proposed methodology to explore existing psychological observations which claimed that physical distance from events affects what is communicated about them. We confirmed these findings by showing that the epicentre of the disease and peripheral regions correspond to clear time-series clusters and that those living in the epicentre of the SARS CoV2 outbreak were more focused on solidarity and policy than those from more peripheral regions. Furthermore, we also found that temporal categories corresponded closely to policy changes during the handling of the pandemic.
Blockchains require deterministic execution in order to reach consensus. This is often guaranteed in languages designed to write smart contracts, such as Solidity. Application-specific blockchains or ``appchains'' allow the blockchain application logic to be written using general-purpose programming languages, giving developers more flexibility but also additional responsibilities. In particular, developers must ensure that their blockchain application logic does not contain any sources of non-determinism. Any source of non-determinism may be a potential source of vulnerabilities. This paper focuses on the use of Static Application Security Testing (SAST) tools to detect such sources of non-determinism at development time. We focus on Cosmos, a prominent open-source project that lets developers build interconnected networks of application-specific blockchains. Cosmos provides a Software Development Kit (SDK) that allows these chains to be implemented in the Go programming language. We create a corpus of 11 representative Cosmos-based appchains to analyze for sources of non-determinism in Go. As part of our study, we identified cosmos-sdk-codeql, a set of CodeQL code analysis rules for Cosmos applications. We find that these rules generate many false positives and propose a refactored set of rules that more precisely detects sources of non-determinism only in code that runs as part of the blockchain logic. We demonstrate a significant increase in the precision of the rules, making the SAST tool more effective and hence potentially contributing to enhanced security for Cosmos-based blockchains.
The capability of R to do symbolic mathematics is enhanced by the caracas package. This package uses the Python computer algebra library SymPy as a back-end but caracas is tightly integrated in the R environment. This enables the R user with symbolic mathematics within R at a high abstraction level rather than using text strings and text string manipulation as the case would be if using SymPy from R directly. We demonstrate how mathematics and statistics can benefit from bridging computer algebra and data via R. This is done thought a number of examples and we propose some topics for small student projects. The caracas package integrates well with e.g. Rmarkdown, and as such creation of scientific reports and teaching is supported.
This paper proposes a spatiotemporal clustering algorithm and its implementation in the R package spotoroo. This work is motivated by the catastrophic bushfires in Australia throughout the summer of 2019-2020 and made possible by the availability of satellite hotspot data. The algorithm is inspired by two existing spatiotemporal clustering algorithms but makes enhancements to cluster points spatially in conjunction with their movement across consecutive time periods. It also allows for the adjustment of key parameters, if required, for different locations and satellite data sources. Bushfire data from Victoria, Australia, is used to illustrate the algorithm and its use within the package.
This paper outlines a natural conversational approach to solving personalized energy-related problems using large language models (LLMs). We focus on customizable optimization problems that necessitate repeated solving with slight variations in modeling and are user-specific, hence posing a challenge to devising a one-size-fits-all model. We put forward a strategy that augments an LLM with an optimization solver, enhancing its proficiency in understanding and responding to user specifications and preferences while providing nonlinear reasoning capabilities. Our approach pioneers the novel concept of human-guided optimization autoformalism, translating a natural language task specification automatically into an optimization instance. This enables LLMs to analyze, explain, and tackle a variety of instance-specific energy-related problems, pushing beyond the limits of current prompt-based techniques. Our research encompasses various commonplace tasks in the energy sector, from electric vehicle charging and Heating, Ventilation, and Air Conditioning (HVAC) control to long-term planning problems such as cost-benefit evaluations for installing rooftop solar photovoltaics (PVs) or heat pumps. This pilot study marks an essential stride towards the context-based formulation of optimization using LLMs, with the potential to democratize optimization processes. As a result, stakeholders are empowered to optimize their energy consumption, promoting sustainable energy practices customized to personal needs and preferences.
In this paper, we introduce a novel Artificial Intelligence (AI) system inspired by the philosophical and psychoanalytical concept of imagination as a ``Re-construction of Experiences". Our AI system is equipped with an imagination-inspired module that bridges the gap between textual inputs and other modalities, enriching the derived information based on previously learned experiences. A unique feature of our system is its ability to formulate independent perceptions of inputs. This leads to unique interpretations of a concept that may differ from human interpretations but are equally valid, a phenomenon we term as ``Interpretable Misunderstanding". We employ large-scale models, specifically a Multimodal Large Language Model (MLLM), enabling our proposed system to extract meaningful information across modalities while primarily remaining unimodal. We evaluated our system against other large language models across multiple tasks, including emotion recognition and question-answering, using a zero-shot methodology to ensure an unbiased scenario that may happen by fine-tuning. Significantly, our system outperformed the best Large Language Models (LLM) on the MELD, IEMOCAP, and CoQA datasets, achieving Weighted F1 (WF1) scores of 46.74%, 25.23%, and Overall F1 (OF1) score of 17%, respectively, compared to 22.89%, 12.28%, and 7% from the well-performing LLM. The goal is to go beyond the statistical view of language processing and tie it to human concepts such as philosophy and psychoanalysis. This work represents a significant advancement in the development of imagination-inspired AI systems, opening new possibilities for AI to generate deep and interpretable information across modalities, thereby enhancing human-AI interaction.
The logic of information flows (LIF) has recently been proposed as a general framework in the field of knowledge representation. In this framework, tasks of procedural nature can still be modeled in a declarative, logic-based fashion. In this paper, we focus on the task of query processing under limited access patterns, a well-studied problem in the database literature. We show that LIF is well-suited for modeling this task. Toward this goal, we introduce a variant of LIF called "forward" LIF (FLIF), in a first-order setting. FLIF takes a novel graph-navigational approach; it is an XPath-like language that nevertheless turns out to be equivalent to the "executable" fragment of first-order logic defined by Nash and Lud\"ascher. One can also classify the variables in FLIF expressions as inputs and outputs. Expressions where inputs and outputs are disjoint, referred to as io-disjoint FLIF expressions, allow a particularly transparent translation into algebraic query plans that respect the access limitations. Finally, we show that general FLIF expressions can always be put into io-disjoint form.
This paper studies the spatial manifestations of order reduction that occur when time-stepping initial-boundary-value problems (IBVPs) with high-order Runge-Kutta methods. For such IBVPs, geometric structures arise that do not have an analog in ODE IVPs: boundary layers appear, induced by a mismatch between the approximation error in the interior and at the boundaries. To understand those boundary layers, an analysis of the modes of the numerical scheme is conducted, which explains under which circumstances boundary layers persist over many time steps. Based on this, two remedies to order reduction are studied: first, a new condition on the Butcher tableau, called weak stage order, that is compatible with diagonally implicit Runge-Kutta schemes; and second, the impact of modified boundary conditions on the boundary layer theory is analyzed.
In this paper, we propose a feature affinity (FA) assisted knowledge distillation (KD) method to improve quantization-aware training of deep neural networks (DNN). The FA loss on intermediate feature maps of DNNs plays the role of teaching middle steps of a solution to a student instead of only giving final answers in the conventional KD where the loss acts on the network logits at the output level. Combining logit loss and FA loss, we found that the quantized student network receives stronger supervision than from the labeled ground-truth data. The resulting FAQD is capable of compressing model on label-free data, which brings immediate practical benefits as pre-trained teacher models are readily available and unlabeled data are abundant. In contrast, data labeling is often laborious and expensive. Finally, we propose a fast feature affinity (FFA) loss that accurately approximates FA loss with a lower order of computational complexity, which helps speed up training for high resolution image input.
Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.
We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.