亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Scale-invariance is an open problem in many computer vision subfields. For example, object labels should remain constant across scales, yet model predictions diverge in many cases. This problem gets harder for tasks where the ground-truth labels change with the presentation scale. In image quality assessment (IQA), downsampling attenuates impairments, e.g., blurs or compression artifacts, which can positively affect the impression evoked in subjective studies. To accurately predict perceptual image quality, cross-resolution IQA methods must therefore account for resolution-dependent errors induced by model inadequacies as well as for the perceptual label shifts in the ground truth. We present the first study of its kind that disentangles and examines the two issues separately via KonX, a novel, carefully crafted cross-resolution IQA database. This paper contributes the following: 1. Through KonX, we provide empirical evidence of label shifts caused by changes in the presentation resolution. 2. We show that objective IQA methods have a scale bias, which reduces their predictive performance. 3. We propose a multi-scale and multi-column DNN architecture that improves performance over previous state-of-the-art IQA models for this task, including recent transformers. We thus both raise and address a novel research problem in image quality assessment.

相關內容

Though recent years have witnessed remarkable progress in single image super-resolution (SISR) tasks with the prosperous development of deep neural networks (DNNs), the deep learning methods are confronted with the computation and memory consumption issues in practice, especially for resource-limited platforms such as mobile devices. To overcome the challenge and facilitate the real-time deployment of SISR tasks on mobile, we combine neural architecture search with pruning search and propose an automatic search framework that derives sparse super-resolution (SR) models with high image quality while satisfying the real-time inference requirement. To decrease the search cost, we leverage the weight sharing strategy by introducing a supernet and decouple the search problem into three stages, including supernet construction, compiler-aware architecture and pruning search, and compiler-aware pruning ratio search. With the proposed framework, we are the first to achieve real-time SR inference (with only tens of milliseconds per frame) for implementing 720p resolution with competitive image quality (in terms of PSNR and SSIM) on mobile platforms (Samsung Galaxy S20).

Cross-domain image retrieval aims at retrieving images across different domains to excavate cross-domain classificatory or correspondence relationships. This paper studies a less-touched problem of cross-domain image retrieval, i.e., unsupervised cross-domain image retrieval, considering the following practical assumptions: (i) no correspondence relationship, and (ii) no category annotations. It is challenging to align and bridge distinct domains without cross-domain correspondence. To tackle the challenge, we present a novel Correspondence-free Domain Alignment (CoDA) method to effectively eliminate the cross-domain gap through In-domain Self-matching Supervision (ISS) and Cross-domain Classifier Alignment (CCA). To be specific, ISS is presented to encapsulate discriminative information into the latent common space by elaborating a novel self-matching supervision mechanism. To alleviate the cross-domain discrepancy, CCA is proposed to align distinct domain-specific classifiers. Thanks to the ISS and CCA, our method could encode the discrimination into the domain-invariant embedding space for unsupervised cross-domain image retrieval. To verify the effectiveness of the proposed method, extensive experiments are conducted on four benchmark datasets compared with six state-of-the-art methods.

Students enrolled in software engineering degrees are generally required to undertake a research project in their final year through which they demonstrate the ability to conduct research, communicate outcomes, and build in-depth expertise in an area. Assessment in these projects typically involves evaluating the product of their research via a thesis or a similar artifact. However, this misses a range of other factors that go into producing successful software engineers and researchers. Incorporating aspects such as process, attitudes, project complexity, and supervision support into the assessment can provide a more holistic evaluation of the performance likely to better align with the intended learning outcomes. In this paper, we present on our experience of adopting an innovative assessment approach to enhance learning outcomes and research performance in our software engineering research projects. Our approach adopted a task-oriented approach to portfolio assessment that incorporates student personas, frequent formative feedback, delayed summative grading, and standards-aligned outcomes-based assessment. We report upon our continuous improvement journey in adapting tasks and criteria to address the challenges of assessing student research projects. Our lessons learnt demonstrate the value of personas to guide the development of holistic rubrics, giving meaning to grades and focusing staff and student attention on attitudes and skills rather than a product only.

In spite of machine learning's rapid growth, its engineering support is scattered in many forms, and tends to favor certain engineering stages, stakeholders, and evaluation preferences. We envision a capability-based framework, which uses fine-grained specifications for ML model behaviors to unite existing efforts towards better ML engineering. We use concrete scenarios (model design, debugging, and maintenance) to articulate capabilities' broad applications across various different dimensions, and their impact on building safer, more generalizable and more trustworthy models that reflect human needs. Through preliminary experiments, we show capabilities' potential for reflecting model generalizability, which can provide guidance for ML engineering process. We discuss challenges and opportunities for capabilities' integration into ML engineering.

When the facial image is blurred, it has a great impact on high-level vision tasks such as face recognition. The purpose of facial image deblurring is to recover a clear image from a blurry input image, which can improve the recognition accuracy and so on. General deblurring methods can not perform well on facial images. So some face deblurring methods are proposed to improve the performance by adding semantic or structural information as specific priors according to the characteristics of facial images. This paper surveys and summarizes recently published methods for facial image deblurring, most of which are based on deep learning. Firstly, we give a brief introduction to the modeling of image blur. Next, we summarize face deblurring methods into two categories, namely model-based methods and deep learning-based methods. Furthermore, we summarize the datasets, loss functions, and performance evaluation metrics commonly used in the neural network training process. We show the performance of classical methods on these datasets and metrics and give a brief discussion on the differences of model-based and learning-based methods. Finally, we discuss current challenges and possible future research directions.

In recent years, Face Image Quality Assessment (FIQA) has become an indispensable part of the face recognition system to guarantee the stability and reliability of recognition performance in an unconstrained scenario. For this purpose, the FIQA method should consider both the intrinsic property and the recognizability of the face image. Most previous works aim to estimate the sample-wise embedding uncertainty or pair-wise similarity as the quality score, which only considers the information from partial intra-class. However, these methods ignore the valuable information from the inter-class, which is for estimating to the recognizability of face image. In this work, we argue that a high-quality face image should be similar to its intra-class samples and dissimilar to its inter-class samples. Thus, we propose a novel unsupervised FIQA method that incorporates Similarity Distribution Distance for Face Image Quality Assessment (SDD-FIQA). Our method generates quality pseudo-labels by calculating the Wasserstein Distance (WD) between the intra-class similarity distributions and inter-class similarity distributions. With these quality pseudo-labels, we are capable of training a regression network for quality prediction. Extensive experiments on benchmark datasets demonstrate that the proposed SDD-FIQA surpasses the state-of-the-arts by an impressive margin. Meanwhile, our method shows good generalization across different recognition systems.

Deep learning-based semi-supervised learning (SSL) algorithms have led to promising results in medical images segmentation and can alleviate doctors' expensive annotations by leveraging unlabeled data. However, most of the existing SSL algorithms in literature tend to regularize the model training by perturbing networks and/or data. Observing that multi/dual-task learning attends to various levels of information which have inherent prediction perturbation, we ask the question in this work: can we explicitly build task-level regularization rather than implicitly constructing networks- and/or data-level perturbation-and-transformation for SSL? To answer this question, we propose a novel dual-task-consistency semi-supervised framework for the first time. Concretely, we use a dual-task deep network that jointly predicts a pixel-wise segmentation map and a geometry-aware level set representation of the target. The level set representation is converted to an approximated segmentation map through a differentiable task transform layer. Simultaneously, we introduce a dual-task consistency regularization between the level set-derived segmentation maps and directly predicted segmentation maps for both labeled and unlabeled data. Extensive experiments on two public datasets show that our method can largely improve the performance by incorporating the unlabeled data. Meanwhile, our framework outperforms the state-of-the-art semi-supervised medical image segmentation methods. Code is available at: //github.com/Luoxd1996/DTC

Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.

It is a common paradigm in object detection frameworks to treat all samples equally and target at maximizing the performance on average. In this work, we revisit this paradigm through a careful study on how different samples contribute to the overall performance measured in terms of mAP. Our study suggests that the samples in each mini-batch are neither independent nor equally important, and therefore a better classifier on average does not necessarily mean higher mAP. Motivated by this study, we propose the notion of Prime Samples, those that play a key role in driving the detection performance. We further develop a simple yet effective sampling and learning strategy called PrIme Sample Attention (PISA) that directs the focus of the training process towards such samples. Our experiments demonstrate that it is often more effective to focus on prime samples than hard samples when training a detector. Particularly, On the MSCOCO dataset, PISA outperforms the random sampling baseline and hard mining schemes, e.g. OHEM and Focal Loss, consistently by more than 1% on both single-stage and two-stage detectors, with a strong backbone ResNeXt-101.

We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.

北京阿比特科技有限公司