亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Algorithms are becoming more widely used in business, and businesses are becoming increasingly concerned that their algorithms will cause significant reputational or financial damage. We should emphasize that any of these damages stem from situations in which the United States lacks strict legislative prohibitions or specified protocols for measuring damages. As a result, governments are enacting legislation and enforcing prohibitions, regulators are fining businesses, and the judiciary is debating whether or not to make artificially intelligent computer models as the decision-makers in the eyes of the law. From autonomous vehicles and banking to medical care, housing, and legal decisions, there will soon be enormous amounts of algorithms that make decisions with limited human interference. Governments, businesses, and society would have an algorithm audit, which would have systematic verification that algorithms are lawful, ethical, and secure, similar to financial audits. A modern market, auditing, and assurance of algorithms developed to professionalize and industrialize AI, machine learning, and related algorithms. Stakeholders of this emerging field include policymakers and regulators, along with industry experts and entrepreneurs. In addition, we foresee audit thresholds and frameworks providing valuable information to all who are concerned with governance and standardization. This paper aims to review the critical areas required for auditing and assurance and spark discussion in this novel field of study and practice.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · MoDELS · 學成 · contrastive · 最優化 ·
2021 年 12 月 8 日

The rapid changes in the finance industry due to the increasing amount of data have revolutionized the techniques on data processing and data analysis and brought new theoretical and computational challenges. In contrast to classical stochastic control theory and other analytical approaches for solving financial decision-making problems that heavily reply on model assumptions, new developments from reinforcement learning (RL) are able to make full use of the large amount of financial data with fewer model assumptions and to improve decisions in complex financial environments. This survey paper aims to review the recent developments and use of RL approaches in finance. We give an introduction to Markov decision processes, which is the setting for many of the commonly used RL approaches. Various algorithms are then introduced with a focus on value and policy based methods that do not require any model assumptions. Connections are made with neural networks to extend the framework to encompass deep RL algorithms. Our survey concludes by discussing the application of these RL algorithms in a variety of decision-making problems in finance, including optimal execution, portfolio optimization, option pricing and hedging, market making, smart order routing, and robo-advising.

Autonomous driving shows great potential to reform modern transportation. However, its reliability and safety have drawn a lot of attention and concerns. Compared with traditional software systems, autonomous driving systems (ADSs) often use deep neural networks in tandem with logic-based modules. This new paradigm poses unique challenges for software testing. Recently, the software engineering (SE) community has devoted significant effort to developing new testing techniques for autonomous driving systems. However, it is not clear to what extent those techniques have addressed the needs of industrial practitioners. To fill this gap, we present the first comprehensive study to identify the current practices and needs of testing autonomous driving systems in industry. We conducted semi-structured interviews with developers from 10 autonomous driving companies and surveyed 100 developers who have worked on autonomous driving systems. Through systematic analysis of interview and questionnaire data, we identified eight common practices and four common needs of testing autonomous driving systems from industry. We further surveyed 98 highly relevant papers from 28 SE conferences, journals, and workshops to find solutions to address those needs. Finally, we analyzed the limitations of existing testing techniques and proposed several future directions for SE researchers.

As the concept and implementation of cutting-edge technologies like artificial intelligence and machine learning has become relevant, academics, researchers and information professionals involve research in this area. The objective of this systematic literature review is to provide a synthesis of empirical studies exploring application of artificial intelligence and machine learning in libraries. To achieve the objectives of the study, a systematic literature review was conducted based on the original guidelines proposed by Kitchenham et al. (2009). Data was collected from Web of Science, Scopus, LISA and LISTA databases. Following the rigorous/ established selection process, a total of thirty-two articles were finally selected, reviewed and analyzed to summarize on the application of AI and ML domain and techniques which are most often used in libraries. Findings show that the current state of the AI and ML research that is relevant with the LIS domain mainly focuses on theoretical works. However, some researchers also emphasized on implementation projects or case studies. This study will provide a panoramic view of AI and ML in libraries for researchers, practitioners and educators for furthering the more technology-oriented approaches, and anticipating future innovation pathways.

As the globally increasing population drives rapid urbanisation in various parts of the world, there is a great need to deliberate on the future of the cities worth living. In particular, as modern smart cities embrace more and more data-driven artificial intelligence services, it is worth remembering that technology can facilitate prosperity, wellbeing, urban livability, or social justice, but only when it has the right analog complements (such as well-thought out policies, mature institutions, responsible governance); and the ultimate objective of these smart cities is to facilitate and enhance human welfare and social flourishing. Researchers have shown that various technological business models and features can in fact contribute to social problems such as extremism, polarization, misinformation, and Internet addiction. In the light of these observations, addressing the philosophical and ethical questions involved in ensuring the security, safety, and interpretability of such AI algorithms that will form the technological bedrock of future cities assumes paramount importance. Globally there are calls for technology to be made more humane and human-centered. In this paper, we analyze and explore key challenges including security, robustness, interpretability, and ethical (data and algorithmic) challenges to a successful deployment of AI in human-centric applications, with a particular emphasis on the convergence of these concepts/challenges. We provide a detailed review of existing literature on these key challenges and analyze how one of these challenges may lead to others or help in solving other challenges. The paper also advises on the current limitations, pitfalls, and future directions of research in these domains, and how it can fill the current gaps and lead to better solutions. We believe such rigorous analysis will provide a baseline for future research in the domain.

Modern cars are evolving in many ways. Technologies such as infotainment systems and companion mobile applications collect a variety of personal data from drivers to enhance the user experience. This paper investigates the extent to which car drivers understand the implications for their privacy, including that car manufacturers must treat that data in compliance with the relevant regulations. It does so by distilling out drivers' concerns on privacy and relating them to their perceptions of trust on car cyber-security. A questionnaire is designed for such purposes to collect answers from a set of 1101 participants, so that the results are statistically relevant. In short, privacy concerns are modest, perhaps because there still is insufficient general awareness on the personal data that are involved, both for in-vehicle treatment and for transmission over the Internet. Trust perceptions on cyber-security are modest too (lower than those on car safety), a surprising contradiction to our research hypothesis that privacy concerns and trust perceptions on car cyber-security are opponent. We interpret this as a clear demand for information and awareness-building campaigns for car drivers, as well as for technical cyber-security and privacy measures that are truly considerate of the human factor.

AI is increasingly used to aid decision-making about the allocation of scarce societal resources, for example housing for homeless people, organs for transplantation, and food donations. Recently, there have been several proposals for how to design objectives for these systems that attempt to achieve some combination of fairness, efficiency, incentive compatibility, and satisfactory aggregation of stakeholder preferences. This paper lays out possible roles and opportunities for AI in this domain, arguing for a closer engagement with the political philosophy literature on local justice, which provides a framework for thinking about how societies have over time framed objectives for such allocation problems. It also discusses how we may be able to integrate into this framework the opportunities and risks opened up by the ubiquity of data and the availability of algorithms that can use them to make accurate predictions about the future.

Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.

Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis in locations close to where data is captured based on artificial intelligence. The aim of edge intelligence is to enhance the quality and speed of data processing and protect the privacy and security of the data. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this paper, we present a thorough and comprehensive survey on the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, namely edge caching, edge training, edge inference, and edge offloading, based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare and analyse the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, etc. This survey article provides a comprehensive introduction to edge intelligence and its application areas. In addition, we summarise the development of the emerging research field and the current state-of-the-art and discuss the important open issues and possible theoretical and technical solutions.

To make deliberate progress towards more intelligent and more human-like artificial systems, we need to be following an appropriate feedback signal: we need to be able to define and evaluate intelligence in a way that enables comparisons between two systems, as well as comparisons with humans. Over the past hundred years, there has been an abundance of attempts to define and measure intelligence, across both the fields of psychology and AI. We summarize and critically assess these definitions and evaluation approaches, while making apparent the two historical conceptions of intelligence that have implicitly guided them. We note that in practice, the contemporary AI community still gravitates towards benchmarking intelligence by comparing the skill exhibited by AIs and humans at specific tasks such as board games and video games. We argue that solely measuring skill at any given task falls short of measuring intelligence, because skill is heavily modulated by prior knowledge and experience: unlimited priors or unlimited training data allow experimenters to "buy" arbitrary levels of skills for a system, in a way that masks the system's own generalization power. We then articulate a new formal definition of intelligence based on Algorithmic Information Theory, describing intelligence as skill-acquisition efficiency and highlighting the concepts of scope, generalization difficulty, priors, and experience. Using this definition, we propose a set of guidelines for what a general AI benchmark should look like. Finally, we present a benchmark closely following these guidelines, the Abstraction and Reasoning Corpus (ARC), built upon an explicit set of priors designed to be as close as possible to innate human priors. We argue that ARC can be used to measure a human-like form of general fluid intelligence and that it enables fair general intelligence comparisons between AI systems and humans.

Recently, artificial intelligence, especially machine learning has demonstrated remarkable performances in many tasks, from image processing to natural language processing, especially with the advent of deep learning. Along with research progress, machine learning has encroached into many different fields and disciplines. Some of them, such as the medical field, require high level of accountability, and thus transparency, which means we need to be able to explain machine decisions, predictions and justify their reliability. This requires greater interpretability, which often means we need to understand the mechanism underlying the algorithms. Unfortunately, the black-box nature of the deep learning is still unresolved, and many machine decisions are still poorly understood. We provide a review on interpretabilities suggested by different research works and categorize them. Also, within an exhaustive list of papers, we find that interpretability is often algorithm-centric, with few human-subject tests to verify whether proposed methods indeed enhance human interpretability. We explore further into interpretability in the medical field, illustrating the complexity of interpretability issue.

北京阿比特科技有限公司