亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents our submission to the Expression Classification Challenge of the fifth Affective Behavior Analysis in-the-wild (ABAW) Competition. In our method, multimodal feature combinations extracted by several different pre-trained models are applied to capture more effective emotional information. For these combinations of visual and audio modal features, we utilize two temporal encoders to explore the temporal contextual information in the data. In addition, we employ several ensemble strategies for different experimental settings to obtain the most accurate expression recognition results. Our system achieves the average F1 Score of 0.45774 on the validation set.

相關內容

Previous group activity recognition approaches were limited to reasoning using human relations or finding important subgroups and tended to ignore indispensable group composition and human-object interactions. This absence makes a partial interpretation of the scene and increases the interference of irrelevant actions on the results. Therefore, we propose our DynamicFormer with Dynamic composition Module (DcM) and Dynamic interaction Module (DiM) to model relations and locations of persons and discriminate the contribution of participants, respectively. Our findings on group composition and human-object interaction inspire our core idea. Group composition tells us the location of people and their relations inside the group, while interaction reflects the relation between humans and objects outside the group. We utilize spatial and temporal encoders in DcM to model our dynamic composition and build DiM to explore interaction with a novel GCN, which has a transformer inside to consider the temporal neighbors of human/object. Also, a Multi-level Dynamic Integration is employed to integrate features from different levels. We conduct extensive experiments on two public datasets and show that our method achieves state-of-the-art.

Auto-evaluation aims to automatically evaluate a trained model on any test dataset without human annotations. Most existing methods utilize global statistics of features extracted by the model as the representation of a dataset. This ignores the influence of the classification head and loses category-wise confusion information of the model. However, ratios of instances assigned to different categories together with their confidence scores reflect how many instances in which categories are difficult for the model to classify, which contain significant indicators for both overall and category-wise performances. In this paper, we propose a Confidence-based Category Relation-aware Regression ($C^2R^2$) method. $C^2R^2$ divides all instances in a meta-set into different categories according to their confidence scores and extracts the global representation from them. For each category, $C^2R^2$ encodes its local confusion relations to other categories into a local representation. The overall and category-wise performances are regressed from global and local representations, respectively. Extensive experiments show the effectiveness of our method.

Continual relation extraction (CRE) models aim at handling emerging new relations while avoiding catastrophically forgetting old ones in the streaming data. Though improvements have been shown by previous CRE studies, most of them only adopt a vanilla strategy when models first learn representations of new relations. In this work, we point out that there exist two typical biases after training of this vanilla strategy: classifier bias and representation bias, which causes the previous knowledge that the model learned to be shaded. To alleviate those biases, we propose a simple yet effective classifier decomposition framework that splits the last FFN layer into separated previous and current classifiers, so as to maintain previous knowledge and encourage the model to learn more robust representations at this training stage. Experimental results on two standard benchmarks show that our proposed framework consistently outperforms the state-of-the-art CRE models, which indicates that the importance of the first training stage to CRE models may be underestimated. Our code is available at //github.com/hemingkx/CDec.

Relation extraction (RE) is a fundamental task in information extraction, whose extension to multilingual settings has been hindered by the lack of supervised resources comparable in size to large English datasets such as TACRED (Zhang et al., 2017). To address this gap, we introduce the MultiTACRED dataset, covering 12 typologically diverse languages from 9 language families, which is created by machine-translating TACRED instances and automatically projecting their entity annotations. We analyze translation and annotation projection quality, identify error categories, and experimentally evaluate fine-tuned pretrained mono- and multilingual language models in common transfer learning scenarios. Our analyses show that machine translation is a viable strategy to transfer RE instances, with native speakers judging more than 84% of the translated instances to be linguistically and semantically acceptable. We find monolingual RE model performance to be comparable to the English original for many of the target languages, and that multilingual models trained on a combination of English and target language data can outperform their monolingual counterparts. However, we also observe a variety of translation and annotation projection errors, both due to the MT systems and linguistic features of the target languages, such as pronoun-dropping, compounding and inflection, that degrade dataset quality and RE model performance.

Simulation engines are widely adopted in robotics. However, they lack either full simulation control, ROS integration, realistic physics, or photorealism. Recently, synthetic data generation and realistic rendering has advanced tasks like target tracking and human pose estimation. However, when focusing on vision applications, there is usually a lack of information like sensor measurements or time continuity. On the other hand, simulations for most robotics tasks are performed in (semi)static environments, with specific sensors and low visual fidelity. To solve this, we introduced in our previous work a fully customizable framework for generating realistic animated dynamic environments (GRADE) [1]. We use GRADE to generate an indoor dynamic environment dataset and then compare multiple SLAM algorithms on different sequences. By doing that, we show how current research over-relies on known benchmarks, failing to generalize. Our tests with refined YOLO and Mask R-CNN models provide further evidence that additional research in dynamic SLAM is necessary. The code, results, and generated data are provided as open-source at //eliabntt.github.io/grade-rrSimulation of Dynamic Environments for SLAM

Deep learning (DL) techniques have broad applications in science, especially in seeking to streamline the pathway to potential solutions and discoveries. Frequently, however, DL models are trained on the results of simulation yet applied to real experimental data. As such, any systematic differences between the simulated and real data may degrade the model's performance -- an effect known as "domain shift." This work studies a toy model of the systematic differences between simulated and real data. It presents a fully unsupervised, task-agnostic method to reduce differences between two systematically different samples. The method is based on the recent advances in unpaired image-to-image translation techniques and is validated on two sets of samples of simulated Liquid Argon Time Projection Chamber (LArTPC) detector events, created to illustrate common systematic differences between the simulated and real data in a controlled way. LArTPC-based detectors represent the next-generation particle detectors, producing unique high-resolution particle track data. This work open-sources the generated LArTPC data set, called Simple Liquid-Argon Track Samples (or SLATS), allowing researchers from diverse domains to study the LArTPC-like data for the first time. The code and trained models are available at //github.com/LS4GAN/uvcgan4slats.

The responsibility of a method/function is to perform some desired computations and disseminate the results to its caller through various deliverables, including object fields and variables in output instructions. Based on this definition of responsibility, this paper offers a new algorithm to refactor long methods to those with a single responsibility. We propose a backward slicing algorithm to decompose a long method into slightly overlapping slices. The slices are computed for each output instruction, representing the outcome of a responsibility delegated to the method. The slices will be non-overlapping if the slicing criteria address the same output variable. The slices are further extracted as independent methods, invoked by the original method if certain behavioral preservations are made. The proposed method has been evaluated on the GEMS extract method refactoring benchmark and three real-world projects. On average, our experiments demonstrate at least a 29.6% improvement in precision and a 12.1% improvement in the recall of uncovering refactoring opportunities compared to the state-of-the-art approaches. Furthermore, our tool improves method-level cohesion metrics by an average of 20% after refactoring. Experimental results confirm the applicability of the proposed approach in extracting methods with a single responsibility.

In this paper, we tackle two challenges in multimodal learning for visual recognition: 1) when missing-modality occurs either during training or testing in real-world situations; and 2) when the computation resources are not available to finetune on heavy transformer models. To this end, we propose to utilize prompt learning and mitigate the above two challenges together. Specifically, our modality-missing-aware prompts can be plugged into multimodal transformers to handle general missing-modality cases, while only requiring less than 1% learnable parameters compared to training the entire model. We further explore the effect of different prompt configurations and analyze the robustness to missing modality. Extensive experiments are conducted to show the effectiveness of our prompt learning framework that improves the performance under various missing-modality cases, while alleviating the requirement of heavy model re-training. Code is available.

Inspired by the human cognitive system, attention is a mechanism that imitates the human cognitive awareness about specific information, amplifying critical details to focus more on the essential aspects of data. Deep learning has employed attention to boost performance for many applications. Interestingly, the same attention design can suit processing different data modalities and can easily be incorporated into large networks. Furthermore, multiple complementary attention mechanisms can be incorporated in one network. Hence, attention techniques have become extremely attractive. However, the literature lacks a comprehensive survey specific to attention techniques to guide researchers in employing attention in their deep models. Note that, besides being demanding in terms of training data and computational resources, transformers only cover a single category in self-attention out of the many categories available. We fill this gap and provide an in-depth survey of 50 attention techniques categorizing them by their most prominent features. We initiate our discussion by introducing the fundamental concepts behind the success of attention mechanism. Next, we furnish some essentials such as the strengths and limitations of each attention category, describe their fundamental building blocks, basic formulations with primary usage, and applications specifically for computer vision. We also discuss the challenges and open questions related to attention mechanism in general. Finally, we recommend possible future research directions for deep attention.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

北京阿比特科技有限公司