Given a graph $G$, a query node $q$, and an integer $k$, community search (CS) seeks a cohesive subgraph (measured by community models such as $k$-core or $k$-truss) from $G$ that contains $q$. It is difficult for ordinary users with less knowledge of graphs' complexity to set an appropriate $k$. Even if we define quite a large $k$, the community size returned by CS is often too large for users to gain much insight about it. Compared against the entire community, key-members in the community appear more valuable than others. To contend with this, we focus on Community Key-members Search problem (CKS). We turn our perspective to the key-members in the community containing $q$ instead of the entire community. To solve CKS problem, we first propose an exact algorithm based on truss decomposition as a baseline. Then, we present four random walk-based optimized algorithms to achieve a trade-off between effectiveness and efficiency, by carefully considering three important cohesiveness features in the design of transition matrix. As a result, we return key-members according to the stationary distribution when random walk converges. We theoretically analyze the rationality of designing the cohesiveness-aware transition matrix for random walk, through Bayesian theory based on Gaussian Mixture Model with Box-Cox Transformation and Copula Function Fitting. Moreover, we propose a lightweight refinement method following an ``expand-replace" manner to further optimize the result with little overhead, and we extend our method for CKS with multiple query nodes. Comprehensive experimental studies on various real-world datasets demonstrate our method's superiority.
We propose a new algorithm for variance reduction when estimating $f(X_T)$ where $X$ is the solution to some stochastic differential equation and $f$ is a test function. The new estimator is $(f(X^1_T) + f(X^2_T))/2$, where $X^1$ and $X^2$ have same marginal law as $X$ but are pathwise correlated so that to reduce the variance. The optimal correlation function $\rho$ is approximated by a deep neural network and is calibrated along the trajectories of $(X^1, X^2)$ by policy gradient and reinforcement learning techniques. Finding an optimal coupling given marginal laws has links with maximum optimal transport.
Many multi-object tracking (MOT) methods follow the framework of "tracking by detection", which associates the target objects-of-interest based on the detection results. However, due to the separate models for detection and association, the tracking results are not optimal.Moreover, the speed is limited by some cumbersome association methods to achieve high tracking performance. In this work, we propose an end-to-end MOT method, with a Gaussian filter-inspired dynamic search region refinement module to dynamically filter and refine the search region by considering both the template information from the past frames and the detection results from the current frame with little computational burden, and a lightweight attention-based tracking head to achieve the effective fine-grained instance association. Extensive experiments and ablation study on MOT17 and MOT20 datasets demonstrate that our method can achieve the state-of-the-art performance with reasonable speed.
Community question answering (CQA) forums are Internet-based platforms where users ask questions about a topic and other expert users try to provide solutions. Many CQA forums such as Quora, Stackoverflow, Yahoo!Answer, StackExchange exist with a lot of user-generated data. These data are leveraged in automated CQA ranking systems where similar questions (and answers) are presented in response to the query of the user. In this work, we empirically investigate a few aspects of this domain. Firstly, in addition to traditional features like TF-IDF, BM25 etc., we introduce a BERT-based feature that captures the semantic similarity between the question and answer. Secondly, most of the existing research works have focused on features extracted only from the question part; features extracted from answers have not been explored extensively. We combine both types of features in a linear fashion. Thirdly, using our proposed concepts, we conduct an empirical investigation with different rank-learning algorithms, some of which have not been used so far in CQA domain. On three standard CQA datasets, our proposed framework achieves state-of-the-art performance. We also analyze importance of the features we use in our investigation. This work is expected to guide the practitioners to select a better set of features for the CQA retrieval task.
We propose a novel protocol for computing a circuit which implements the multi-party private set intersection functionality (PSI). Circuit-based approach has advantages over using custom protocols to achieve this task, since many applications of PSI do not require the computation of the intersection itself, but rather specific functional computations over the items in the intersection. Our protocol represents the pioneering circuit-based multi-party PSI protocol, which builds upon and optimizes the two-party SCS \cite{huang2012private} protocol. By using secure computation between two parties, our protocol sidesteps the complexities associated with multi-party interactions and demonstrates good scalability. In order to mitigate the high overhead associated with circuit-based constructions, we have further enhanced our protocol by utilizing simple hashing scheme and permutation-based hash functions. These tricks have enabled us to minimize circuit size by employing bucketing techniques while simultaneously attaining noteworthy reductions in both computation and communication expenses.
Attention-based encoder-decoder (AED) speech recognition model has been widely successful in recent years. However, the joint optimization of acoustic model and language model in end-to-end manner has created challenges for text adaptation. In particular, effectively, quickly and inexpensively adapting text has become a primary concern for deploying AED systems in industry. To address this issue, we propose a novel model, the hybrid attention-based encoder-decoder (HAED) speech recognition model that preserves the modularity of conventional hybrid automatic speech recognition systems. Our HAED model separates the acoustic and language models, allowing for the use of conventional text-based language model adaptation techniques. We demonstrate that the proposed HAED model yields 21\% Word Error Rate (WER) improvements in relative when out-of-domain text data is used for language model adaptation, and with only a minor degradation in WER on a general test set compared with conventional AED model.
RoboChart is a core notation in the RoboStar framework. It is a timed and probabilistic domain-specific and state machine-based language for robotics. RoboChart supports shared variables and communication across entities in its component model. It has formal denotational semantics given in CSP. The semantic technique of Interaction Trees (ITrees) represents behaviours of reactive and concurrent programs interacting with their environments. Recent mechanisation of ITrees, along with ITree-based CSP semantics and a Z mathematical toolkit in Isabelle/HOL, bring new applications of verification and animation for state-rich process languages, such as RoboChart. In this paper, we use ITrees to give RoboChart novel operational semantics, implement it in Isabelle, and use Isabelle's code generator to generate verified and executable animations. We illustrate our approach using an autonomous chemical detector model and a patrol robot model additionally exhibiting nondeterminism and using shared variables. With animation, we show two concrete scenarios for the chemical detector when the robot encounters different environmental inputs and three concrete scenarios for the patrol robot when its calibrated position is in different sections of a corridor. We also verify that the animated scenarios are truly trace refinements of the CSP denotational semantics of the RoboChart models using FDR, a refinement model checker for CSP. This ensures that our approach to resolving nondeterminism using CSP operators with priority is sound and correct.
Geometric deep learning (GDL), which is based on neural network architectures that incorporate and process symmetry information, has emerged as a recent paradigm in artificial intelligence. GDL bears particular promise in molecular modeling applications, in which various molecular representations with different symmetry properties and levels of abstraction exist. This review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum chemistry. Emphasis is placed on the relevance of the learned molecular features and their complementarity to well-established molecular descriptors. This review provides an overview of current challenges and opportunities, and presents a forecast of the future of GDL for molecular sciences.
Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.
Multi-paragraph reasoning is indispensable for open-domain question answering (OpenQA), which receives less attention in the current OpenQA systems. In this work, we propose a knowledge-enhanced graph neural network (KGNN), which performs reasoning over multiple paragraphs with entities. To explicitly capture the entities' relatedness, KGNN utilizes relational facts in knowledge graph to build the entity graph. The experimental results show that KGNN outperforms in both distractor and full wiki settings than baselines methods on HotpotQA dataset. And our further analysis illustrates KGNN is effective and robust with more retrieved paragraphs.
Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs---a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DiffPool, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DiffPool yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.