This paper presents a tutorial overview of path integral (PI) control approaches for stochastic optimal control and trajectory optimization. We concisely summarize the theoretical development of path integral control to compute a solution for stochastic optimal control and provide algorithmic descriptions of the cross-entropy (CE) method, an open-loop controller using the receding horizon scheme known as the model predictive path integral (MPPI), and a parameterized state feedback controller based on the path integral control theory. We discuss policy search methods based on path integral control, efficient and stable sampling strategies, extensions to multi-agent decision-making, and MPPI for the trajectory optimization on manifolds. For tutorial demonstrations, some PI-based controllers are implemented in MATLAB and ROS2/Gazebo simulations for trajectory optimization. The simulation frameworks and source codes are publicly available at //github.com/INHA-Autonomous-Systems-Laboratory-ASL/An-Overview-on-Recent-Advances-in-Path-Integral-Control.
We optimize pipeline parallelism for deep neural network (DNN) inference by partitioning model graphs into $k$ stages and minimizing the running time of the bottleneck stage, including communication. We design practical algorithms for this NP-hard problem and show that they are nearly optimal in practice by comparing against strong lower bounds obtained via novel mixed-integer programming (MIP) formulations. We apply these algorithms and lower-bound methods to production models to achieve substantially improved approximation guarantees compared to standard combinatorial lower bounds. For example, evaluated via geometric means across production data with $k=16$ pipeline stages, our MIP formulations more than double the lower bounds, improving the approximation ratio from $2.175$ to $1.058$. This work shows that while max-throughput partitioning is theoretically hard, we have a handle on the algorithmic side of the problem in practice and much of the remaining challenge is in developing more accurate cost models to feed into the partitioning algorithms.
Deep learning (DL)-based channel state information (CSI) feedback has shown promising potential to improve spectrum efficiency in massive MIMO systems. However, practical DL approaches require a sizeable CSI dataset for each scenario, and require large storage or updating bandwidth for multiple learned models. To overcome this costly barrier, we develop a solution for efficient training and deployment enhancement of DL-based CSI feedback by exploiting a lightweight translation model to cope with new CSI environments and by proposing novel dataset augmentation based on domain knowledge. Specifically, we first develop a deep unfolding CSI feedback network, SPTM2-ISTANet+, which employs spherical normalization to address the challenge of path loss variation. We also introduce an integration of a trainable measurement matrix and residual CSI recovery blocks within SPTM2-ISTANet+ to improve efficiency and accuracy. Using SPTM2-ISTANet+ as the anchor feedback model, we propose an efficient scenario-adaptive CSI feedback architecture. This new CSI-TransNet exploits a plug-in module for CSI translation consisting of a sparsity aligning function and lightweight DL module to reuse pretrained models in unseen environments. To work with small datasets, we propose a lightweight and general augmentation strategy based on domain knowledge. Test results demonstrate the efficacy and efficiency of the proposed solution for accurate CSI feedback given limited measurements for unseen CSI environments.
Modern policy optimization methods in reinforcement learning, such as TRPO and PPO, owe their success to the use of parameterized policies. However, while theoretical guarantees have been established for this class of algorithms, especially in the tabular setting, the use of general parameterization schemes remains mostly unjustified. In this work, we introduce a novel framework for policy optimization based on mirror descent that naturally accommodates general parameterizations. The policy class induced by our scheme recovers known classes, e.g., softmax, and generates new ones depending on the choice of mirror map. Using our framework, we obtain the first result that guarantees linear convergence for a policy-gradient-based method involving general parameterization. To demonstrate the ability of our framework to accommodate general parameterization schemes, we provide its sample complexity when using shallow neural networks, show that it represents an improvement upon the previous best results, and empirically validate the effectiveness of our theoretical claims on classic control tasks.
This work presents an adaptive group testing framework for the range-based high dimensional near neighbor search problem. The proposed method detects high-similarity vectors from an extensive collection of high dimensional vectors, where each vector represents an image descriptor. Our method efficiently marks each item in the collection as neighbor or non-neighbor on the basis of a cosine distance threshold without exhaustive search. Like other methods in the domain of large scale retrieval, our approach exploits the assumption that most of the items in the collection are unrelated to the query. Unlike other methods, it does not assume a large difference between the cosine similarity of the query vector with the least related neighbor and that with the least unrelated non-neighbor. Following the procedure of binary splitting, a multi-stage adaptive group testing algorithm, we split the set of items to be searched into half at each step, and perform dot product tests on smaller and smaller subsets, many of which we are able to prune away. We experimentally show that our method achieves a speed-up over exhaustive search by a factor of more than ten with an accuracy same as that of exhaustive search, on a variety of large datasets. We present a theoretical analysis of the expected number of distance computations per query and the probability that a pool with a certain number of members will be pruned. In this way, our method exploits very useful and practical distributional properties unlike other methods. In our method, all required data structures are created purely offline. Moreover, our method does not impose any strong assumptions on the number of true near neighbors, is adaptible to streaming settings where new vectors are dynamically added to the database, and does not require any parameter tuning.
Segmentation and tracking of unseen object instances in discrete frames pose a significant challenge in dynamic industrial robotic contexts, such as distribution warehouses. Here, robots must handle object rearrangement, including shifting, removal, and partial occlusion by new items, and track these items after substantial temporal gaps. The task is further complicated when robots encounter objects not learned in their training sets, which requires the ability to segment and track previously unseen items. Considering that continuous observation is often inaccessible in such settings, our task involves working with a discrete set of frames separated by indefinite periods during which substantial changes to the scene may occur. This task also translates to domestic robotic applications, such as rearrangement of objects on a table. To address these demanding challenges, we introduce new synthetic and real-world datasets that replicate these industrial and household scenarios. We also propose a novel paradigm for joint segmentation and tracking in discrete frames along with a transformer module that facilitates efficient inter-frame communication. The experiments we conduct show that our approach significantly outperforms recent methods. For additional results and videos, please visit \href{//sites.google.com/view/stow-corl23}{website}. Code and dataset will be released.
We propose a framework for expressing and analyzing the Quality of Service (QoS) of message-passing systems using a choreographic model that consists of g-choreographies and Communicating Finite State machines (CFSMs). The following are our three main contributions: (I) an extension of CFSMs with non-functional contracts to specify quantitative constraints of local computations, (II) a dynamic temporal logic capable of expressing QoS, properties of systems relative to the g-choreography that specifies the communication protocol, (III) the semi-decidability of our logic which enables a bounded model-checking approach to verify QoS property of communicating systems.
The network edge's role in Artificial Intelligence (AI) inference processing is rapidly expanding, driven by a plethora of applications seeking computational advantages. These applications strive for data-driven efficiency, leveraging robust AI capabilities and prioritizing real-time responsiveness. However, as demand grows, so does system complexity. The proliferation of AI inference accelerators showcases innovation but also underscores challenges, particularly the varied software and hardware configurations of these devices. This diversity, while advantageous for certain tasks, introduces hurdles in device integration and coordination. In this paper, our objectives are three-fold. Firstly, we outline the requirements and components of a framework that accommodates hardware diversity. Next, we assess the impact of device heterogeneity on AI inference performance, identifying strategies to optimize outcomes without compromising service quality. Lastly, we shed light on the prevailing challenges and opportunities in this domain, offering insights for both the research community and industry stakeholders.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.