We introduce SonicSense, a holistic design of hardware and software to enable rich robot object perception through in-hand acoustic vibration sensing. While previous studies have shown promising results with acoustic sensing for object perception, current solutions are constrained to a handful of objects with simple geometries and homogeneous materials, single-finger sensing, and mixing training and testing on the same objects. SonicSense enables container inventory status differentiation, heterogeneous material prediction, 3D shape reconstruction, and object re-identification from a diverse set of 83 real-world objects. Our system employs a simple but effective heuristic exploration policy to interact with the objects as well as end-to-end learning-based algorithms to fuse vibration signals to infer object properties. Our framework underscores the significance of in-hand acoustic vibration sensing in advancing robot tactile perception.
Smart contracts, primarily written in Solidity, are integral to blockchain software applications, yet precise analysis and maintenance are hindered by the limitations of existing differencing tools. We introduce SoliDiffy, a novel Abstract Syntax Tree (AST) differencing tool specifically designed for Solidity. SoliDiffy enables fine-grained analysis by generating accurate and concise edit scripts of smart contracts, making it ideal for downstream tasks such as vulnerability detection, automated code repair, and code reviews. Our comprehensive evaluation on a large dataset of real-world Solidity contracts demonstrates that SoliDiffy delivers shorter and more precise edit scripts compared to state-of-the-art tools, while performing consistently in complex contract modifications. SoliDiffy is made publicly available at //github.com/mojtaba-eshghie/SoliDiffy.
With the rapid development of wearable technology, devices like smartphones, smartwatches, and headphones equipped with IMUs have become essential for applications such as pedestrian positioning. However, traditional pedestrian dead reckoning (PDR) methods struggle with diverse motion patterns, while recent data-driven approaches, though improving accuracy, often lack robustness due to reliance on a single device.In our work, we attempt to enhance the positioning performance using the low-cost commodity IMUs embedded in the wearable devices. We propose a multi-device deep learning framework named Suite-IN, aggregating motion data from Apple Suite for inertial navigation. Motion data captured by sensors on different body parts contains both local and global motion information, making it essential to reduce the negative effects of localized movements and extract global motion representations from multiple devices.
In many practical applications, decision-making processes must balance the costs of acquiring information with the benefits it provides. Traditional control systems often assume full observability, an unrealistic assumption when observations are expensive. We tackle the challenge of simultaneously learning observation and control strategies in such cost-sensitive environments by introducing the Observation-Constrained Markov Decision Process (OCMDP), where the policy influences the observability of the true state. To manage the complexity arising from the combined observation and control actions, we develop an iterative, model-free deep reinforcement learning algorithm that separates the sensing and control components of the policy. This decomposition enables efficient learning in the expanded action space by focusing on when and what to observe, as well as determining optimal control actions, without requiring knowledge of the environment's dynamics. We validate our approach on a simulated diagnostic task and a realistic healthcare environment using HeartPole. Given both scenarios, the experimental results demonstrate that our model achieves a substantial reduction in observation costs on average, significantly outperforming baseline methods by a notable margin in efficiency.
Traditional compilers, designed for optimizing low-level code, fall short when dealing with modern, computation-heavy applications like image processing, machine learning, or numerical simulations. Optimizations should understand the primitive operations of the specific application domain and thus happen on that level. Domain-specific languages (DSLs) fulfill these requirements. However, DSL compilers reinvent the wheel over and over again as standard optimizations, code generators, and general infrastructure & boilerplate code must be reimplemented for each DSL compiler. This paper presents MimIR, an extensible, higher-order intermediate representation. At its core, MimIR is a pure type system and, hence, a form of a typed lambda calculus. Developers can declare the signatures of new (domain-specific) operations, called "axioms". An axiom can be the declaration of a function, a type operator, or any other entity with a possibly polymorphic, polytypic, and/or dependent type. This way, developers can extend MimIR at any low or high level and bundle them in a plugin. Plugins extend the compiler and take care of optimizing and lowering the plugins' axioms. We show the expressiveness and effectiveness of MimIR in three case studies: Low-level plugins that operate at the same level of abstraction as LLVM, a regular-expression matching plugin, and plugins for linear algebra and automatic differentiation. We show that in all three studies, MimIR produces code that has state-of-the-art performance.
Tiny Machine Learning (TinyML) systems, which enable machine learning inference on highly resource-constrained devices, are transforming edge computing but encounter unique security challenges. These devices, restricted by RAM and CPU capabilities two to three orders of magnitude smaller than conventional systems, make traditional software and hardware security solutions impractical. The physical accessibility of these devices exacerbates their susceptibility to side-channel attacks and information leakage. Additionally, TinyML models pose security risks, with weights potentially encoding sensitive data and query interfaces that can be exploited. This paper offers the first thorough survey of TinyML security threats. We present a device taxonomy that differentiates between IoT, EdgeML, and TinyML, highlighting vulnerabilities unique to TinyML. We list various attack vectors, assess their threat levels using the Common Vulnerability Scoring System, and evaluate both existing and possible defenses. Our analysis identifies where traditional security measures are adequate and where solutions tailored to TinyML are essential. Our results underscore the pressing need for specialized security solutions in TinyML to ensure robust and secure edge computing applications. We aim to inform the research community and inspire innovative approaches to protecting this rapidly evolving and critical field.
We introduce Deep Augmentation, an approach to implicit data augmentation using dropout or PCA to transform a targeted layer within a neural network to improve performance and generalization. We demonstrate Deep Augmentation through extensive experiments on contrastive learning tasks in NLP, computer vision, and graph learning. We observe substantial performance gains with Transformers, ResNets, and Graph Neural Networks as the underlying models in contrastive learning, but observe inverse effects on the corresponding supervised problems. Our analysis suggests that Deep Augmentation alleviates co-adaptation between layers, a problem exhibited by self-supervised learning where ground truth labels are not available. We use this observation to formulate a method for selecting which layer to target; in particular, our experimentation reveals that targeting deeper layers with Deep Augmentation outperforms augmenting the input data. The simple network- and modality-agnostic nature of this approach enables its integration into various machine learning pipelines.
The pursuit of fairness in machine learning (ML), ensuring that the models do not exhibit biases toward protected demographic groups, typically results in a compromise scenario. This compromise can be explained by a Pareto frontier where given certain resources (e.g., data), reducing the fairness violations often comes at the cost of lowering the model accuracy. In this work, we aim to train models that mitigate group fairness disparity without causing harm to model accuracy. Intuitively, acquiring more data is a natural and promising approach to achieve this goal by reaching a better Pareto frontier of the fairness-accuracy tradeoff. The current data acquisition methods, such as fair active learning approaches, typically require annotating sensitive attributes. However, these sensitive attribute annotations should be protected due to privacy and safety concerns. In this paper, we propose a tractable active data sampling algorithm that does not rely on training group annotations, instead only requiring group annotations on a small validation set. Specifically, the algorithm first scores each new example by its influence on fairness and accuracy evaluated on the validation dataset, and then selects a certain number of examples for training. We theoretically analyze how acquiring more data can improve fairness without causing harm, and validate the possibility of our sampling approach in the context of risk disparity. We also provide the upper bound of generalization error and risk disparity as well as the corresponding connections. Extensive experiments on real-world data demonstrate the effectiveness of our proposed algorithm. Our code is available at //github.com/UCSC-REAL/FairnessWithoutHarm.
MoHeat is a modular hardware and software platform designed for rapid prototyping of highly responsive, non-contact thermal feedback interactions. In our previous work, we developed an intensity-adjustable, highly responsive, non-contact thermal feedback system by integrating the vortex effect and thermal radiation. In this study, we further enhanced the system by developing an authoring tool that allows users to freely adjust the intensity of thermal stimuli, the duration of stimuli, the delay time before stimuli, and the interval between alternating hot and cold stimuli. This modular approach enables countless combinations of non-contact thermal feedback experiences.
Recently, there is a growing interest in creating computer-aided design (CAD) models based on user intent, known as controllable CAD generation. Existing work offers limited controllability and needs separate models for different types of control, reducing efficiency and practicality. To achieve controllable generation across all CAD construction hierarchies, such as sketch-extrusion, extrusion, sketch, face, loop and curve, we propose FlexCAD, a unified model by fine-tuning large language models (LLMs). First, to enhance comprehension by LLMs, we represent a CAD model as a structured text by abstracting each hierarchy as a sequence of text tokens. Second, to address various controllable generation tasks in a unified model, we introduce a hierarchy-aware masking strategy. Specifically, during training, we mask a hierarchy-aware field in the CAD text with a mask token. This field, composed of a sequence of tokens, can be set flexibly to represent various hierarchies. Subsequently, we ask LLMs to predict this masked field. During inference, the user intent is converted into a CAD text with a mask token replacing the part the user wants to modify, which is then fed into FlexCAD to generate new CAD models. Comprehensive experiments on public dataset demonstrate the effectiveness of FlexCAD in both generation quality and controllability. Code will be available at //github.com/microsoft/CADGeneration/FlexCAD.
The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.