In areal unit data with missing or suppressed data, it desirable to create models that are able to predict observations that are not available. Traditional statistical methods achieve this through Bayesian hierarchical models that can capture the unexplained residual spatial autocorrelation through conditional autoregressive (CAR) priors, such that they can make predictions at geographically related spatial locations. In contrast, typical machine learning approaches such as random forests ignore this residual autocorrelation, and instead base predictions on complex non-linear feature-target relationships. In this paper, we propose CAR-Forest, a novel spatial prediction algorithm that combines the best features of both approaches by fusing them together. By iteratively refitting a random forest combined with a Bayesian CAR model in one algorithm, CAR-Forest can incorporate flexible feature-target relationships while still accounting for the residual spatial autocorrelation. Our results, based on a Scottish housing price data set, show that CAR-Forest outperforms Bayesian CAR models, random forests, and the state-of-the-art hybrid approach, geographically weighted random forest, providing a state-of-the-art framework for small-area spatial prediction.
The deformed energy method has shown to be a good option for dimensional synthesis of mechanisms. In this paper the introduction of some new features to such approach is proposed. First, constraints fixing dimensions of certain links are introduced in the error function of the synthesis problem. Second, requirements on distances between determinate nodes are included in the error function for the analysis of the deformed position problem. Both the overall synthesis error function and the inner analysis error function are optimized using a Sequential Quadratic Problem (SQP) approach. This also reduces the probability of branch or circuit defects. In the case of the inner function analytical derivatives are used, while in the synthesis optimization approximate derivatives have been introduced. Furthermore, constraints are analyzed under two formulations, the Euclidean distance and an alternative approach that uses the previous raised to the power of two. The latter approach is often used in kinematics, and simplifies the computation of derivatives. Some examples are provided to show the convergence order of the error function and the fulfilment of the constraints in both formulations studied under different topological situations or achieved energy levels.
A deep generative model yields an implicit estimator for the unknown distribution or density function of the observation. This paper investigates some statistical properties of the implicit density estimator pursued by VAE-type methods from a nonparametric density estimation framework. More specifically, we obtain convergence rates of the VAE-type density estimator under the assumption that the underlying true density function belongs to a locally H\"{o}lder class. Remarkably, a near minimax optimal rate with respect to the Hellinger metric can be achieved by the simplest network architecture, a shallow generative model with a one-dimensional latent variable.
The logistic regression model is one of the most popular data generation model in noisy binary classification problems. In this work, we study the sample complexity of estimating the parameters of the logistic regression model up to a given $\ell_2$ error, in terms of the dimension and the inverse temperature, with standard normal covariates. The inverse temperature controls the signal-to-noise ratio of the data generation process. While both generalization bounds and asymptotic performance of the maximum-likelihood estimator for logistic regression are well-studied, the non-asymptotic sample complexity that shows the dependence on error and the inverse temperature for parameter estimation is absent from previous analyses. We show that the sample complexity curve has two change-points in terms of the inverse temperature, clearly separating the low, moderate, and high temperature regimes.
Objective: Prediction models are popular in medical research and practice. By predicting an outcome of interest for specific patients, these models may help inform difficult treatment decisions, and are often hailed as the poster children for personalized, data-driven healthcare. Many prediction models are deployed for decision support based on their prediction accuracy in validation studies. We investigate whether this is a safe and valid approach. Materials and Methods: We show that using prediction models for decision making can lead to harmful decisions, even when the predictions exhibit good discrimination after deployment. These models are harmful self-fulfilling prophecies: their deployment harms a group of patients but the worse outcome of these patients does not invalidate the predictive power of the model. Results: Our main result is a formal characterization of a set of such prediction models. Next we show that models that are well calibrated before and after deployment are useless for decision making as they made no change in the data distribution. Discussion: Our results point to the need to revise standard practices for validation, deployment and evaluation of prediction models that are used in medical decisions. Conclusion: Outcome prediction models can yield harmful self-fulfilling prophecies when used for decision making, a new perspective on prediction model development, deployment and monitoring is needed.
Multi-fidelity models provide a framework for integrating computational models of varying complexity, allowing for accurate predictions while optimizing computational resources. These models are especially beneficial when acquiring high-accuracy data is costly or computationally intensive. This review offers a comprehensive analysis of multi-fidelity models, focusing on their applications in scientific and engineering fields, particularly in optimization and uncertainty quantification. It classifies publications on multi-fidelity modeling according to several criteria, including application area, surrogate model selection, types of fidelity, combination methods and year of publication. The study investigates techniques for combining different fidelity levels, with an emphasis on multi-fidelity surrogate models. This work discusses reproducibility, open-sourcing methodologies and benchmarking procedures to promote transparency. The manuscript also includes educational toy problems to enhance understanding. Additionally, this paper outlines best practices for presenting multi-fidelity-related savings in a standardized, succinct and yet thorough manner. The review concludes by examining current trends in multi-fidelity modeling, including emerging techniques, recent advancements, and promising research directions.
The Spatial AutoRegressive model (SAR) is commonly used in studies involving spatial and network data to estimate the spatial or network peer influence and the effects of covariates on the response, taking into account the spatial or network dependence. While the model can be efficiently estimated with a Quasi maximum likelihood approach (QMLE), the detrimental effect of covariate measurement error on the QMLE and how to remedy it is currently unknown. If covariates are measured with error, then the QMLE may not have the $\sqrt{n}$ convergence and may even be inconsistent even when a node is influenced by only a limited number of other nodes or spatial units. We develop a measurement error-corrected ML estimator (ME-QMLE) for the parameters of the SAR model when covariates are measured with error. The ME-QMLE possesses statistical consistency and asymptotic normality properties. We consider two types of applications. The first is when the true covariate cannot be measured directly, and a proxy is observed instead. The second one involves including latent homophily factors estimated with error from the network for estimating peer influence. Our numerical results verify the bias correction property of the estimator and the accuracy of the standard error estimates in finite samples. We illustrate the method on a real dataset related to county-level death rates from the COVID-19 pandemic.
We consider nonparametric Bayesian inference in a multidimensional diffusion model with reflecting boundary conditions based on discrete high-frequency observations. We prove a general posterior contraction rate theorem in $L^2$-loss, which is applied to Gaussian priors. The resulting posteriors, as well as their posterior means, are shown to converge to the ground truth at the minimax optimal rate over H\"older smoothness classes in any dimension. Of independent interest and as part of our proofs, we show that certain frequentist penalized least squares estimators are also minimax optimal.
Collecting large quantities of high-quality data is often prohibitively expensive or impractical, and a crucial bottleneck in machine learning. One may instead augment a small set of $n$ data points from the target distribution with data from more accessible sources like public datasets, data collected under different circumstances, or synthesized by generative models. Blurring distinctions, we refer to such data as `surrogate data'. We define a simple scheme for integrating surrogate data into training and use both theoretical models and empirical studies to explore its behavior. Our main findings are: $(i)$ Integrating surrogate data can significantly reduce the test error on the original distribution; $(ii)$ In order to reap this benefit, it is crucial to use optimally weighted empirical risk minimization; $(iii)$ The test error of models trained on mixtures of real and surrogate data is well described by a scaling law. This can be used to predict the optimal weighting and the gain from surrogate data.
Constant (naive) imputation is still widely used in practice as this is a first easy-to-use technique to deal with missing data. Yet, this simple method could be expected to induce a large bias for prediction purposes, as the imputed input may strongly differ from the true underlying data. However, recent works suggest that this bias is low in the context of high-dimensional linear predictors when data is supposed to be missing completely at random (MCAR). This paper completes the picture for linear predictors by confirming the intuition that the bias is negligible and that surprisingly naive imputation also remains relevant in very low dimension.To this aim, we consider a unique underlying random features model, which offers a rigorous framework for studying predictive performances, whilst the dimension of the observed features varies.Building on these theoretical results, we establish finite-sample bounds on stochastic gradient (SGD) predictors applied to zero-imputed data, a strategy particularly well suited for large-scale learning.If the MCAR assumption appears to be strong, we show that similar favorable behaviors occur for more complex missing data scenarios.
We consider the estimation of the cumulative hazard function, and equivalently the distribution function, with censored data under a setup that preserves the privacy of the survival database. This is done through a $\alpha$-locally differentially private mechanism for the failure indicators and by proposing a non-parametric kernel estimator for the cumulative hazard function that remains consistent under the privatization. Under mild conditions, we also prove lowers bounds for the minimax rates of convergence and show that estimator is minimax optimal under a well-chosen bandwidth.