Evolutionary multi-objective algorithms have been widely shown to be successful when utilized for a variety of stochastic combinatorial optimization problems. Chance constrained optimization plays an important role in complex real-world scenarios, as it allows decision makers to take into account the uncertainty of the environment. We consider a version of the knapsack problem with stochastic profits to guarantee a certain level of confidence in the profit of the solutions. We introduce the multi-objective formulations of the profit chance constrained knapsack problem and design three bi-objective fitness evaluation methods that work independently of the specific confidence level required. We evaluate our approaches using well-known multi-objective evolutionary algorithms GSEMO and NSGA-II. In addition, we introduce a filtering method for GSEMO that improves the quality of the final population by periodically removing certain solutions from the interim populations based on their confidence level. We show the effectiveness of our approaches on several benchmarks for both settings where the knapsack items have fixed uniform uncertainties and uncertainties that are positively correlated with the expected profit of an item.
An important issue in many multivariate regression problems is to eliminate candidate predictors with null predictor vectors. In large-dimensional (LD) setting where the numbers of responses and predictors are large, model selection encounters the scalability challenge. Knock-one-out (KOO) statistics hold promise to meet this challenge. In this paper, the almost sure limits and the central limit theorem of the KOO statistics are derived under the LD setting and mild distributional assumptions (finite fourth moments) of the errors. These theoretical results guarantee the strong consistency of a subset selection rule based on the KOO statistics with a general threshold. For enhancing the robustness of the selection rule, we also propose a bootstrap threshold for the KOO approach. Simulation results support our conclusions and demonstrate the selection probabilities by the KOO approach with the bootstrap threshold outperform the methods using Akaike information threshold, Bayesian information threshold and Mallow's C$_p$ threshold. We compare the proposed KOO approach with those based on information threshold to a chemometrics dataset and a yeast cell-cycle dataset, which suggests our proposed method identifies useful models.
We consider evolutionary systems, i.e. systems of linear partial differential equations arising from the mathematical physics. For these systems there exists a general solution theory in exponentially weighted spaces which can be exploited in the analysis of numerical methods. The numerical method considered in this paper is a discontinuous Galerkin method in time combined with a conforming Galerkin method in space. Building on our recent paper, we improve some of the results, study the dependence of the numerical solution on the weight-parameter, consider a reformulation and post-processing of its numerical solution. As a by-product we provide error estimates for the dG-C0 method. Numerical simulations support the theoretical findings.
The current state-of-the-art in multi-objective optimization assumes either a given utility function, learns a utility function interactively or tries to determine the complete Pareto front, requiring a post elicitation of the preferred result. However, result elicitation in real world problems is often based on implicit and explicit expert knowledge, making it difficult to define a utility function, whereas interactive learning or post elicitation requires repeated and expensive expert involvement. To mitigate this, we learn a utility function offline, using expert knowledge by means of preference learning. In contrast to other works, we do not only use (pairwise) result preferences, but also coarse information about the utility function space. This enables us to improve the utility function estimate, especially when using very few results. Additionally, we model the occurring uncertainties in the utility function learning task and propagate them through the whole optimization chain. Our method to learn a utility function eliminates the need of repeated expert involvement while still leading to high-quality results. We show the sample efficiency and quality gains of the proposed method in 4 domains, especially in cases where the surrogate utility function is not able to exactly capture the true expert utility function. We also show that to obtain good results, it is important to consider the induced uncertainties and analyze the effect of biased samples, which is a common problem in real world domains.
The work of Kalman and Bucy has established a duality between filtering and optimal estimation in the context of time-continuous linear systems. This duality has recently been extended to time-continuous nonlinear systems in terms of an optimization problem constrained by a backward stochastic partial differential equation. Here we revisit this problem from the perspective of appropriate forward-backward stochastic differential equations. This approach sheds new light on the estimation problem and provides a unifying perspective. It is also demonstrated that certain formulations of the estimation problem lead to deterministic formulations similar to the linear Gaussian case as originally investigated by Kalman and Bucy.
We consider the problem of solving LP relaxations of MAP-MRF inference problems, and in particular the method proposed recently in (Swoboda, Kolmogorov 2019; Kolmogorov, Pock 2021). As a key computational subroutine, it uses a variant of the Frank-Wolfe (FW) method to minimize a smooth convex function over a combinatorial polytope. We propose an efficient implementation of this subproutine based on in-face Frank-Wolfe directions, introduced in (Freund et al. 2017) in a different context. More generally, we define an abstract data structure for a combinatorial subproblem that enables in-face FW directions, and describe its specialization for tree-structured MAP-MRF inference subproblems. Experimental results indicate that the resulting method is the current state-of-art LP solver for some classes of problems. Our code is available at //pub.ist.ac.at/~vnk/papers/IN-FACE-FW.html.
We present a comprehensive computational study of a class of linear system solvers, called {\it Triangle Algorithm} (TA) and {\it Centering Triangle Algorithm} (CTA), developed by Kalantari \cite{kalantari23}. The algorithms compute an approximate solution or minimum-norm solution to $Ax=b$ or $A^TAx=A^Tb$, where $A$ is an $m \times n$ real matrix of arbitrary rank. The algorithms specialize when $A$ is symmetric positive semi-definite. Based on the description and theoretical properties of TA and CTA from \cite{kalantari23}, we give an implementation of the algorithms that is easy-to-use for practitioners, versatile for a wide range of problems, and robust in that our implementation does not necessitate any constraints on $A$. Next, we make computational comparisons of our implementation with the Matlab implementations of two state-of-the-art algorithms, GMRES and ``lsqminnorm". We consider square and rectangular matrices, for $m$ up to $10000$ and $n$ up to $1000000$, encompassing a variety of applications. These results indicate that our implementation outperforms GMRES and ``lsqminnorm" both in runtime and quality of residuals. Moreover, the relative residuals of CTA decrease considerably faster and more consistently than GMRES, and our implementation provides high precision approximation, faster than GMRES reports lack of convergence. With respect to ``lsqminnorm", our implementation runs faster, producing better solutions. Additionally, we present a theoretical study in the dynamics of iterations of residuals in CTA and complement it with revealing visualizations. Lastly, we extend TA for LP feasibility problems, handling non-negativity constraints. Computational results show that our implementation for this extension is on par with those of TA and CTA, suggesting applicability in linear programming and related problems.
Decentralized minimax optimization has been actively studied in the past few years due to its application in a wide range of machine learning models. However, the current theoretical understanding of its convergence rate is far from satisfactory since existing works only focus on the nonconvex-strongly-concave problem. This motivates us to study decentralized minimax optimization algorithms for the nonconvex-nonconcave problem. To this end, we develop two novel decentralized stochastic variance-reduced gradient descent ascent algorithms for the finite-sum nonconvex-nonconcave problem that satisfies the Polyak-{\L}ojasiewicz (PL) condition. In particular, our theoretical analyses demonstrate how to conduct local updates and perform communication to achieve the linear convergence rate. To the best of our knowledge, this is the first work achieving linear convergence rates for decentralized nonconvex-nonconcave problems. Finally, we verify the performance of our algorithms on both synthetic and real-world datasets. The experimental results confirm the efficacy of our algorithms.
This paper focuses on the information freshness of finite-state Markov sources, using the uncertainty of information (UoI) as the performance metric. Measured by Shannon's entropy, UoI can capture not only the transition dynamics of the Markov source but also the different evolutions of information quality caused by the different values of the last observation. We consider an information update system with M finite-state Markov sources transmitting information to a remote monitor via m communication channels. Our goal is to explore the optimal scheduling policy to minimize the sum-UoI of the Markov sources. The problem is formulated as a restless multi-armed bandit (RMAB). We relax the RMAB and then decouple the relaxed problem into M single bandit problems. Analyzing the single bandit problem provides useful properties with which the relaxed problem reduces to maximizing a concave and piecewise linear function, allowing us to develop a gradient method to solve the relaxed problem and obtain its optimal policy. By rounding up the optimal policy for the relaxed problem, we obtain an index policy for the original RMAB problem. Notably, the proposed index policy is universal in the sense that it applies to general RMABs with bounded cost functions.
Since the 1950s, machine translation (MT) has become one of the important tasks of AI and development, and has experienced several different periods and stages of development, including rule-based methods, statistical methods, and recently proposed neural network-based learning methods. Accompanying these staged leaps is the evaluation research and development of MT, especially the important role of evaluation methods in statistical translation and neural translation research. The evaluation task of MT is not only to evaluate the quality of machine translation, but also to give timely feedback to machine translation researchers on the problems existing in machine translation itself, how to improve and how to optimise. In some practical application fields, such as in the absence of reference translations, the quality estimation of machine translation plays an important role as an indicator to reveal the credibility of automatically translated target languages. This report mainly includes the following contents: a brief history of machine translation evaluation (MTE), the classification of research methods on MTE, and the the cutting-edge progress, including human evaluation, automatic evaluation, and evaluation of evaluation methods (meta-evaluation). Manual evaluation and automatic evaluation include reference-translation based and reference-translation independent participation; automatic evaluation methods include traditional n-gram string matching, models applying syntax and semantics, and deep learning models; evaluation of evaluation methods includes estimating the credibility of human evaluations, the reliability of the automatic evaluation, the reliability of the test set, etc. Advances in cutting-edge evaluation methods include task-based evaluation, using pre-trained language models based on big data, and lightweight optimisation models using distillation techniques.
Bid optimization for online advertising from single advertiser's perspective has been thoroughly investigated in both academic research and industrial practice. However, existing work typically assume competitors do not change their bids, i.e., the wining price is fixed, leading to poor performance of the derived solution. Although a few studies use multi-agent reinforcement learning to set up a cooperative game, they still suffer the following drawbacks: (1) They fail to avoid collusion solutions where all the advertisers involved in an auction collude to bid an extremely low price on purpose. (2) Previous works cannot well handle the underlying complex bidding environment, leading to poor model convergence. This problem could be amplified when handling multiple objectives of advertisers which are practical demands but not considered by previous work. In this paper, we propose a novel multi-objective cooperative bid optimization formulation called Multi-Agent Cooperative bidding Games (MACG). MACG sets up a carefully designed multi-objective optimization framework where different objectives of advertisers are incorporated. A global objective to maximize the overall profit of all advertisements is added in order to encourage better cooperation and also to protect self-bidding advertisers. To avoid collusion, we also introduce an extra platform revenue constraint. We analyze the optimal functional form of the bidding formula theoretically and design a policy network accordingly to generate auction-level bids. Then we design an efficient multi-agent evolutionary strategy for model optimization. Offline experiments and online A/B tests conducted on the Taobao platform indicate both single advertiser's objective and global profit have been significantly improved compared to state-of-art methods.