亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Code benchmarks such as HumanEval are widely adopted to evaluate the capabilities of Large Language Models (LLMs), providing insights into their strengths and weaknesses. However, current benchmarks primarily exercise LLMs' capability on common coding tasks (e.g., bubble sort, greatest common divisor), leaving domain-specific coding tasks (e.g., computation, system, cryptography) unexplored. To fill this gap, we propose a multi-domain code benchmark, DOMAINEVAL, designed to evaluate LLMs' coding capabilities thoroughly. Our pipeline works in a fully automated manner, enabling a push-bottom construction from code repositories into formatted subjects under study. Interesting findings are observed by evaluating 12 representative LLMs against DOMAINEVAL. We notice that LLMs are generally good at computation tasks while falling short on cryptography and system coding tasks. The performance gap can be as much as 68.94% (80.94% - 12.0%) in some LLMs. We also observe that generating more samples can increase the overall performance of LLMs, while the domain bias may even increase. The contributions of this study include a code generation benchmark dataset DOMAINEVAL, encompassing six popular domains, a fully automated pipeline for constructing code benchmarks, and an identification of the limitations of LLMs in code generation tasks based on their performance on DOMAINEVAL, providing directions for future research improvements. The leaderboard is available at //domaineval.github.io/.

相關內容

代(dai)碼(Code)是專(zhuan)知(zhi)網的一(yi)個重要知(zhi)識資料(liao)文(wen)檔板塊(kuai),旨在整理(li)收(shou)錄論文(wen)源(yuan)代(dai)碼、復現(xian)代(dai)碼,經(jing)典工程代(dai)碼等,便(bian)于用戶查閱(yue)下載使用。

Vision-Language Models (VLMs) have shown impressive performance in vision tasks, but adapting them to new domains often requires expensive fine-tuning. Prompt tuning techniques, including textual, visual, and multimodal prompting, offer efficient alternatives by leveraging learnable prompts. However, their application to Vision-Language Segmentation Models (VLSMs) and evaluation under significant domain shifts remain unexplored. This work presents an open-source benchmarking framework, TuneVLSeg, to integrate various unimodal and multimodal prompt tuning techniques into VLSMs, making prompt tuning usable for downstream segmentation datasets with any number of classes. TuneVLSeg includes $6$ prompt tuning strategies on various prompt depths used in $2$ VLSMs totaling of $8$ different combinations. We test various prompt tuning on $8$ diverse medical datasets, including $3$ radiology datasets (breast tumor, echocardiograph, chest X-ray pathologies) and $5$ non-radiology datasets (polyp, ulcer, skin cancer), and two natural domain segmentation datasets. Our study found that textual prompt tuning struggles under significant domain shifts, from natural-domain images to medical data. Furthermore, visual prompt tuning, with fewer hyperparameters than multimodal prompt tuning, often achieves performance competitive to multimodal approaches, making it a valuable first attempt. Our work advances the understanding and applicability of different prompt-tuning techniques for robust domain-specific segmentation. The source code is available at //github.com/naamiinepal/tunevlseg.

Policy evaluation is an important instrument for the comparison of different algorithms in Reinforcement Learning (RL). Yet even a precise knowledge of the value function $V^{\pi}$ corresponding to a policy $\pi$ does not provide reliable information on how far is the policy $\pi$ from the optimal one. We present a novel model-free upper value iteration procedure $({\sf UVIP})$ that allows us to estimate the suboptimality gap $V^{\star}(x) - V^{\pi}(x)$ from above and to construct confidence intervals for $V^\star$. Our approach relies on upper bounds to the solution of the Bellman optimality equation via martingale approach. We provide theoretical guarantees for ${\sf UVIP}$ under general assumptions and illustrate its performance on a number of benchmark RL problems.

This technical report investigates the integration of generative AI (GenAI), specifically ChatGPT, into the practice of ethical hacking through a comprehensive experimental study and conceptual analysis. Conducted in a controlled virtual environment, the study evaluates GenAI's effectiveness across the key stages of penetration testing on Linux-based target machines operating within a virtual local area network (LAN), including reconnaissance, scanning and enumeration, gaining access, maintaining access, and covering tracks. The findings confirm that GenAI can significantly enhance and streamline the ethical hacking process while underscoring the importance of balanced human-AI collaboration rather than the complete replacement of human input. The report also critically examines potential risks such as misuse, data biases, hallucination, and over-reliance on AI. This research contributes to the ongoing discussion on the ethical use of AI in cybersecurity and highlights the need for continued innovation to strengthen security defences.

Current Large Language Models (LLMs) have shown strong reasoning capabilities in commonsense question answering benchmarks, but the process underlying their success remains largely opaque. As a consequence, recent approaches have equipped LLMs with mechanisms for knowledge retrieval, reasoning and introspection, not only to improve their capabilities but also to enhance the interpretability of their outputs. However, these methods require additional training, hand-crafted templates or human-written explanations. To address these issues, we introduce ZEBRA, a zero-shot question answering framework that combines retrieval, case-based reasoning and introspection and dispenses with the need for additional training of the LLM. Given an input question, ZEBRA retrieves relevant question-knowledge pairs from a knowledge base and generates new knowledge by reasoning over the relationships in these pairs. This generated knowledge is then used to answer the input question, improving the model's performance and interpretability. We evaluate our approach across 8 well-established commonsense reasoning benchmarks, demonstrating that ZEBRA consistently outperforms strong LLMs and previous knowledge integration approaches, achieving an average accuracy improvement of up to 4.5 points.

We introduce the Faetar Automatic Speech Recognition Benchmark, a benchmark corpus designed to push the limits of current approaches to low-resource speech recognition. Faetar, a Franco-Proven\c{c}al variety spoken primarily in Italy, has no standard orthography, has virtually no existing textual or speech resources other than what is included in the benchmark, and is quite different from other forms of Franco-Proven\c{c}al. The corpus comes from field recordings, most of which are noisy, for which only 5 hrs have matching transcriptions, and for which forced alignment is of variable quality. The corpus contains an additional 20 hrs of unlabelled speech. We report baseline results from state-of-the-art multilingual speech foundation models with a best phone error rate of 30.4%, using a pipeline that continues pre-training on the foundation model using the unlabelled set.

Retrieval-Augmented Generation (RAG) improves LLMs by enabling them to incorporate external data during generation. This raises concerns for data owners regarding unauthorized use of their content in RAG systems. Despite its importance, the challenge of detecting such unauthorized usage remains underexplored, with existing datasets and methodologies from adjacent fields being ill-suited for its study. In this work, we take several steps to bridge this gap. First, we formalize this problem as (black-box) RAG Dataset Inference (RAG-DI). To facilitate research on this challenge, we further introduce a novel dataset specifically designed for benchmarking RAG-DI methods under realistic conditions, and propose a set of baseline approaches. Building on this foundation, we introduce Ward, a RAG-DI method based on LLM watermarks that enables data owners to obtain rigorous statistical guarantees regarding the usage of their dataset in a RAG system. In our experimental evaluation, we show that Ward consistently outperforms all baselines across many challenging settings, achieving higher accuracy, superior query efficiency and robustness. Our work provides a foundation for future studies of RAG-DI and highlights LLM watermarks as a promising approach to this problem.

This paper presents Deformable Neural Vessel Representations (DeNVeR), an unsupervised approach for vessel segmentation in X-ray videos without annotated ground truth. DeNVeR uses optical flow and layer separation, enhancing segmentation accuracy and adaptability through test-time training. A key component of our research is the introduction of the XACV dataset, the first X-ray angiography coronary video dataset with high-quality, manually labeled segmentation ground truth. Our evaluation demonstrates that DeNVeR outperforms current state-of-the-art methods in vessel segmentation. This paper marks an advance in medical imaging, providing a robust, data-efficient tool for disease diagnosis and treatment planning and setting a new standard for future research in video vessel segmentation. See our project page for video results at //kirito878.github.io/DeNVeR/.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.

We present MMKG, a collection of three knowledge graphs that contain both numerical features and (links to) images for all entities as well as entity alignments between pairs of KGs. Therefore, multi-relational link prediction and entity matching communities can benefit from this resource. We believe this data set has the potential to facilitate the development of novel multi-modal learning approaches for knowledge graphs.We validate the utility ofMMKG in the sameAs link prediction task with an extensive set of experiments. These experiments show that the task at hand benefits from learning of multiple feature types.

北京阿比特科技有限公司