亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we develop an adaptive high-order surface finite element method (FEM) to solve self-consistent field equations of polymers on general curved surfaces. It is an improvement of the existing algorithm of [J. Comp. Phys. 387: 230-244 (2019)] in which a linear surface FEM was presented to address this problem. The high-order surface FEM is obtained by the high-order surface geometrical approximation and high-order function space approximation. In order to describe the sharp interface in the strong segregation system more accurately, an adaptive FEM equipped with a novel Log marking strategy is proposed. Compared with the traditional strategy, this new marking strategy can not only label the elements that need to be refined or coarsened, but also give the refined or coarsened times, which can make full use of the information of a posterior error estimator and improve the efficiency of the adaptive algorithm. To demonstrate the power of our approach, we investigate the self-assembled patterns of diblock copolymers on several distinct curved surfaces. Numerical results illustrate the efficiency of the proposed method, especially for strong segregation systems.

相關內容

 Surface 是微軟公司( )旗下一系列使用 Windows 10(早期為 Windows 8.X)操作系統的電腦產品,目前有 Surface、Surface Pro 和 Surface Book 三個系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由時任微軟 CEO 史蒂夫·鮑爾默發布于在洛杉磯舉行的記者會,2012 年 10 月 26 日上市銷售。

Spectral clustering (SC) is one of the most popular clustering methods and often outperforms traditional clustering methods. SC uses the eigenvectors of a Laplacian matrix calculated from a similarity matrix of a dataset. SC has serious drawbacks: the significant increases in the time complexity derived from the computation of eigenvectors and the memory space complexity to store the similarity matrix. To address the issues, I develop a new approximate spectral clustering using the network generated by growing neural gas (GNG), called ASC with GNG in this study. ASC with GNG uses not only reference vectors for vector quantization but also the topology of the network for extraction of the topological relationship between data points in a dataset. ASC with GNG calculates the similarity matrix from both the reference vectors and the topology of the network generated by GNG. Using the network generated from a dataset by GNG, ASC with GNG achieves to reduce the computational and space complexities and improve clustering quality. In this study, I demonstrate that ASC with GNG effectively reduces the computational time. Moreover, this study shows that ASC with GNG provides equal to or better clustering performance than SC.

We deal with the problem of parameter estimation in stochastic differential equations (SDEs) in a partially observed framework. We aim to design a method working for both elliptic and hypoelliptic SDEs, the latters being characterized by degenerate diffusion coefficients. This feature often causes the failure of contrast estimators based on Euler Maruyama discretization scheme and dramatically impairs classic stochastic filtering methods used to reconstruct the unobserved states. All of theses issues make the estimation problem in hypoelliptic SDEs difficult to solve. To overcome this, we construct a well-defined cost function no matter the elliptic nature of the SDEs. We also bypass the filtering step by considering a control theory perspective. The unobserved states are estimated by solving deterministic optimal control problems using numerical methods which do not need strong assumptions on the diffusion coefficient conditioning. Numerical simulations made on different partially observed hypoelliptic SDEs reveal our method produces accurate estimate while dramatically reducing the computational price comparing to other methods.

\noindent Several decades ago the Proximal Point Algorithm (PPA) stated to gain a long-lasting attraction for both abstract operator theory and numerical optimization communities. Even in modern applications, researchers still use proximal minimization theory to design scalable algorithms that overcome nonsmoothness. Remarkable works as \cite{Fer:91,Ber:82constrained,Ber:89parallel,Tom:11} established tight relations between the convergence behaviour of PPA and the regularity of the objective function. In this manuscript we derive nonasymptotic iteration complexity of exact and inexact PPA to minimize convex functions under $\gamma-$Holderian growth: $\BigO{\log(1/\epsilon)}$ (for $\gamma \in [1,2]$) and $\BigO{1/\epsilon^{\gamma - 2}}$ (for $\gamma > 2$). In particular, we recover well-known results on PPA: finite convergence for sharp minima and linear convergence for quadratic growth, even under presence of inexactness. However, without taking into account the concrete computational effort paid for computing each PPA iteration, any iteration complexity remains abstract and purely informative. Therefore, using an inner (proximal) gradient/subgradient method subroutine that computes inexact PPA iteration, we secondly show novel computational complexity bounds on a restarted inexact PPA, available when no information on the growth of the objective function is known. In the numerical experiments we confirm the practical performance and implementability of our framework.

In this paper, we propose and analyze a temporally second-order accurate, fully discrete finite element method for the magnetohydrodynamic (MHD) equations. A modified Crank--Nicolson method is used to discretize the model and appropriate semi-implicit treatments are applied to the fluid convection term and two coupling terms. These semi-implicit approximations result in a linear system with variable coefficients for which the unique solvability can be proved theoretically. In addition, we use a decoupling projection method of the Van Kan type \cite{vankan1986} in the Stokes solver, which computes the intermediate velocity field based on the gradient of the pressure from the previous time level, and enforces the incompressibility constraint via the Helmholtz decomposition of the intermediate velocity field. The energy stability of the scheme is theoretically proved, in which the decoupled Stokes solver needs to be analyzed in details. Optimal-order convergence of $\mathcal{O} (\tau^2+h^{r+1})$ in the discrete $L^\infty(0,T;L^2)$ norm is proved for the proposed decoupled projection finite element scheme, where $\tau$ and $h$ are the time stepsize and spatial mesh size, respectively, and $r$ is the degree of the finite elements. Existing error estimates of second-order projection methods of the Van Kan type \cite{vankan1986} were only established in the discrete $L^2(0,T;L^2)$ norm for the Navier--Stokes equations. Numerical examples are provided to illustrate the theoretical results.

We introduce a local adaptive discontinuous Galerkin method for convection-diffusion-reaction equations. The proposed method is based on a coarse grid and iteratively improves the solution's accuracy by solving local elliptic problems in refined subdomains. For purely diffusion problems, we already proved that this scheme converges under minimal regularity assumptions [A. Abdulle and G.Rosilho de Souza, ESAIM: M2AN, 53(4):1269--1303, 2019]. In this paper, we provide an algorithm for the automatic identification of the local elliptic problems' subdomains employing a flux reconstruction strategy. Reliable error estimators are derived for the local adaptive method. Numerical comparisons with a classical nonlocal adaptive algorithm illustrate the efficiency of the method.

Stabilized explicit methods are particularly efficient for large systems of stiff stochastic differential equations (SDEs) due to their extended stability domain. However, they loose their efficiency when a severe stiffness is induced by very few "fast" degrees of freedom, as the stiff and nonstiff terms are evaluated concurrently. Therefore, inspired by [A. Abdulle, M. J. Grote, and G. Rosilho de Souza, Preprint (2020), arXiv:2006.00744] we introduce a stochastic modified equation whose stiffness depends solely on the "slow" terms. By integrating this modified equation with a stabilized explicit scheme we devise a multirate method which overcomes the bottleneck caused by a few severely stiff terms and recovers the efficiency of stabilized schemes for large systems of nonlinear SDEs. The scheme is not based on any scale separation assumption of the SDE and therefore it is employable for problems stemming from the spatial discretization of stochastic parabolic partial differential equations on locally refined grids. The multirate scheme has strong order 1/2, weak order 1 and its stability is proved on a model problem. Numerical experiments confirm the efficiency and accuracy of the scheme.

We consider a class of second-order Strang splitting methods for Allen-Cahn equations with polynomial or logarithmic nonlinearities. For the polynomial case both the linear and the nonlinear propagators are computed explicitly. We show that this type of Strang splitting scheme is unconditionally stable regardless of the time step. Moreover we establish strict energy dissipation for a judiciously modified energy which coincides with the classical energy up to $\mathcal O(\tau)$ where $\tau$ is the time step. For the logarithmic potential case, since the continuous-time nonlinear propagator no longer enjoys explicit analytic treatments, we employ a second order in time two-stage implicit Runge--Kutta (RK) nonlinear propagator together with an efficient Newton iterative solver. We prove a maximum principle which ensures phase separation and establish energy dissipation law under mild restrictions on the time step. These appear to be the first rigorous results on the energy dissipation of Strang-type splitting methods for Allen-Cahn equations.

By improving the trace finite element method, we developed another higher-order trace finite element method by integrating on the surface with exact geometry description. This method restricts the finite element space on the volume mesh to the surface accurately, and approximates Laplace-Beltrami operator on the surface by calculating the high-order numerical integration on the exact surface directly. We employ this method to calculate the Laplace-Beltrami equation and the Laplace-Beltrami eigenvalue problem. Numerical error analysis shows that this method has an optimal convergence order in both problems. Numerical experiments verify the correctness of the theoretical analysis. The algorithm is more accurate and easier to implement than the existing high-order trace finite element method.

When constructing high-order schemes for solving hyperbolic conservation laws, the corresponding high-order reconstructions are commonly performed in characteristic spaces to eliminate spurious oscillations as much as possible. For multi-dimensional finite volume (FV) schemes, we need to perform the characteristic decomposition several times in different normal directions of the target cell, which is very time-consuming. In this paper, we propose a rotated characteristic decomposition technique which requires only one-time decomposition for multi-dimensional reconstructions. The rotated direction depends only on the gradient of a specific physical quantity which is cheap to calculate. This technique not only reduces the computational cost remarkably, but also controls spurious oscillations effectively. We take a third-order weighted essentially non-oscillatory finite volume (WENO-FV) scheme for solving the Euler equations as an example to demonstrate the efficiency of the proposed technique.

In this paper a problem of numerical simulation of hydraulic fractures is considered. An efficient algorithm of solution, based on the universal scheme introduced earlier by the authors for the fractures propagating in elastic solids, is proposed. The algorithm utilizes a FEM based subroutine to compute deformation of the fractured material. Consequently, the computational scheme retains the relative simplicity of its original version and simultaneously enables one to deal with more advanced cases of the fractured material properties and configurations. In particular, the problems of poroelasticity, plasticity and spatially varying properties of the fractured material can be analyzed. The accuracy and efficiency of the proposed algorithm are verified against analytical benchmark solutions. The algorithm capabilities are demonstrated using the example of the hydraulic fracture propagating in complex geological settings.

北京阿比特科技有限公司