When estimating quantities and fields that are difficult to measure directly, such as the fluidity of ice, from point data sources, such as satellite altimetry, it is important to solve a numerical inverse problem that is formulated with Bayesian consistency. Otherwise, the resultant probability density function for the difficult to measure quantity or field will not be appropriately clustered around the truth. In particular, the inverse problem should be formulated by evaluating the numerical solution at the true point locations for direct comparison with the point data source. If the data are first fitted to a gridded or meshed field on the computational grid or mesh, and the inverse problem formulated by comparing the numerical solution to the fitted field, the benefits of additional point data values below the grid density will be lost. We demonstrate, with examples in the fields of groundwater hydrology and glaciology, that a consistent formulation can increase the accuracy of results and aid discourse between modellers and observationalists. To do this, we bring point data into the finite element method ecosystem as discontinuous fields on meshes of disconnected vertices. Point evaluation can then be formulated as a finite element interpolation operation (dual-evaluation). This new abstraction is well-suited to automation, including automatic differentiation. We demonstrate this through implementation in Firedrake, which generates highly optimised code for solving PDEs with the finite element method. Our solution integrates with dolfin-adjoint/pyadjoint, allowing PDE-constrained optimisation problems, such as data assimilation, to be solved through forward and adjoint mode automatic differentiation.
This paper is motivated by medical studies in which the same patients with multiple sclerosis are examined at several successive visits and described by fractional anisotropy tract profiles, which can be represented as functions. Since the observations for each patient are dependent random processes, they follow a repeated measures design for functional data. To compare the results for different visits, we thus consider functional repeated measures analysis of variance. For this purpose, a pointwise test statistic is constructed by adapting the classical test statistic for one-way repeated measures analysis of variance to the functional data framework. By integrating and taking the supremum of the pointwise test statistic, we create two global test statistics. Apart from verifying the general null hypothesis on the equality of mean functions corresponding to different objects, we also propose a simple method for post hoc analysis. We illustrate the finite sample properties of permutation and bootstrap testing procedures in an extensive simulation study. Finally, we analyze a motivating real data example in detail.
The ongoing deep learning revolution has allowed computers to outclass humans in various games and perceive features imperceptible to humans during classification tasks. Current machine learning techniques have clearly distinguished themselves in specialized tasks. However, we have yet to see robots capable of performing multiple tasks at an expert level. Most work in this field is focused on the development of more sophisticated learning algorithms for a robot's controller given a largely static and presupposed robotic design. By focusing on the development of robotic bodies, rather than neural controllers, I have discovered that robots can be designed such that they overcome many of the current pitfalls encountered by neural controllers in multitask settings. Through this discovery, I also present novel metrics to explicitly measure the learning ability of a robotic design and its resistance to common problems such as catastrophic interference. Traditionally, the physical robot design requires human engineers to plan every aspect of the system, which is expensive and often relies on human intuition. In contrast, within the field of evolutionary robotics, evolutionary algorithms are used to automatically create optimized designs, however, such designs are often still limited in their ability to perform in a multitask setting. The metrics created and presented here give a novel path to automated design that allow evolved robots to synergize with their controller to improve the computational efficiency of their learning while overcoming catastrophic interference. Overall, this dissertation intimates the ability to automatically design robots that are more general purpose than current robots and that can perform various tasks while requiring less computation.
We examine machine learning models in a setup where individuals have the choice to share optional personal information with a decision-making system, as seen in modern insurance pricing models. Some users consent to their data being used whereas others object and keep their data undisclosed. In this work, we show that the decision not to share data can be considered as information in itself that should be protected to respect users' privacy. This observation raises the overlooked problem of how to ensure that users who protect their personal data do not suffer any disadvantages as a result. To address this problem, we formalize protection requirements for models which only use the information for which active user consent was obtained. This excludes implicit information contained in the decision to share data or not. We offer the first solution to this problem by proposing the notion of Protected User Consent (PUC), which we prove to be loss-optimal under our protection requirement. To learn PUC-compliant models, we devise a model-agnostic data augmentation strategy with finite sample convergence guarantees. Finally, we analyze the implications of PUC on a variety of challenging real-world datasets, tasks, and models.
A well-established approach for inferring full displacement and stress fields from possibly sparse data is to calibrate the parameter of a given constitutive model using a Bayesian update. After calibration, a (stochastic) forward simulation is conducted with the identified model parameters to resolve physical fields in regions that were not accessible to the measurement device. A shortcoming of model calibration is that the model is deemed to best represent reality, which is only sometimes the case, especially in the context of the aging of structures and materials. While this issue is often addressed with repeated model calibration, a different approach is followed in the recently proposed statistical Finite Element Method (statFEM). Instead of using Bayes' theorem to update model parameters, the displacement is chosen as the stochastic prior and updated to fit the measurement data more closely. For this purpose, the statFEM framework introduces a so-called model-reality mismatch, parametrized by only three hyperparameters. This makes the inference of full-field data computationally efficient in an online stage: If the stochastic prior can be computed offline, solving the underlying partial differential equation (PDE) online is unnecessary. Compared to solving a PDE, identifying only three hyperparameters and conditioning the state on the sensor data requires much fewer computational resources. This paper presents two contributions to the existing statFEM approach: First, we use a non-intrusive polynomial chaos method to compute the prior, enabling the use of complex mechanical models in deterministic formulations. Second, we examine the influence of prior material models (linear elastic and St.Venant Kirchhoff material with uncertain Young's modulus) on the updated solution. We present statFEM results for 1D and 2D examples, while an extension to 3D is straightforward.
Robots are notoriously difficult to design because of complex interdependencies between their physical structure, sensory and motor layouts, and behavior. Despite this, almost every detail of every robot built to date has been manually determined by a human designer after several months or years of iterative ideation, prototyping, and testing. Inspired by evolutionary design in nature, the automated design of robots using evolutionary algorithms has been attempted for two decades, but it too remains inefficient: days of supercomputing are required to design robots in simulation that, when manufactured, exhibit desired behavior. Here we show for the first time de-novo optimization of a robot's structure to exhibit a desired behavior, within seconds on a single consumer-grade computer, and the manufactured robot's retention of that behavior. Unlike other gradient-based robot design methods, this algorithm does not presuppose any particular anatomical form; starting instead from a randomly-generated apodous body plan, it consistently discovers legged locomotion, the most efficient known form of terrestrial movement. If combined with automated fabrication and scaled up to more challenging tasks, this advance promises near instantaneous design, manufacture, and deployment of unique and useful machines for medical, environmental, vehicular, and space-based tasks.
Mapping political party systems to metric policy spaces is one of the major methodological problems in political science. At present, in most political science project this task is performed by domain experts relying on purely qualitative assessments, with all the attendant problems of subjectivity and labor intensiveness. We consider how advances in natural language processing, including large transformer-based language models, can be applied to solve that issue. We apply a number of texts similarity measures to party political programs, analyze how they correlate with each other, and -- in the absence of a satisfactory benchmark -- evaluate them against other measures, including those based on expert surveys, voting records, electoral patterns, and candidate networks. Finally, we consider the prospects of relying on those methods to correct, supplement, and eventually replace expert judgments.
Recently it has been shown that using diffusion models for inverse problems can lead to remarkable results. However, these approaches require a closed-form expression of the degradation model and can not support complex degradations. To overcome this limitation, we propose a method (INDigo) that combines invertible neural networks (INN) and diffusion models for general inverse problems. Specifically, we train the forward process of INN to simulate an arbitrary degradation process and use the inverse as a reconstruction process. During the diffusion sampling process, we impose an additional data-consistency step that minimizes the distance between the intermediate result and the INN-optimized result at every iteration, where the INN-optimized image is composed of the coarse information given by the observed degraded image and the details generated by the diffusion process. With the help of INN, our algorithm effectively estimates the details lost in the degradation process and is no longer limited by the requirement of knowing the closed-form expression of the degradation model. Experiments demonstrate that our algorithm obtains competitive results compared with recently leading methods both quantitatively and visually. Moreover, our algorithm performs well on more complex degradation models and real-world low-quality images.
This study employed the MIMIC-IV database as data source to investigate the use of dynamic, high-frequency, multivariate time-series vital signs data, including temperature, heart rate, mean blood pressure, respiratory rate, and SpO2, monitored first 8 hours data in the ICU stay. Various clustering algorithms were compared, and an end-to-end multivariate time series clustering system called Time2Feat, combined with K-Means, was chosen as the most effective method to cluster patients in the ICU. In clustering analysis, data of 8,080 patients admitted between 2008 and 2016 was used for model development and 2,038 patients admitted between 2017 and 2019 for model validation. By analyzing the differences in clinical mortality prognosis among different categories, varying risks of ICU mortality and hospital mortality were found between different subgroups. Furthermore, the study visualized the trajectory of vital signs changes. The findings of this study provide valuable insights into the potential use of multivariate time-series clustering systems in patient management and monitoring in the ICU setting.
The rise of powerful large language models (LLMs) brings about tremendous opportunities for innovation but also looming risks for individuals and society at large. We have reached a pivotal moment for ensuring that LLMs and LLM-infused applications are developed and deployed responsibly. However, a central pillar of responsible AI -- transparency -- is largely missing from the current discourse around LLMs. It is paramount to pursue new approaches to provide transparency for LLMs, and years of research at the intersection of AI and human-computer interaction (HCI) highlight that we must do so with a human-centered perspective: Transparency is fundamentally about supporting appropriate human understanding, and this understanding is sought by different stakeholders with different goals in different contexts. In this new era of LLMs, we must develop and design approaches to transparency by considering the needs of stakeholders in the emerging LLM ecosystem, the novel types of LLM-infused applications being built, and the new usage patterns and challenges around LLMs, all while building on lessons learned about how people process, interact with, and make use of information. We reflect on the unique challenges that arise in providing transparency for LLMs, along with lessons learned from HCI and responsible AI research that has taken a human-centered perspective on AI transparency. We then lay out four common approaches that the community has taken to achieve transparency -- model reporting, publishing evaluation results, providing explanations, and communicating uncertainty -- and call out open questions around how these approaches may or may not be applied to LLMs. We hope this provides a starting point for discussion and a useful roadmap for future research.
Autonomous driving has achieved a significant milestone in research and development over the last decade. There is increasing interest in the field as the deployment of self-operating vehicles on roads promises safer and more ecologically friendly transportation systems. With the rise of computationally powerful artificial intelligence (AI) techniques, autonomous vehicles can sense their environment with high precision, make safe real-time decisions, and operate more reliably without human interventions. However, intelligent decision-making in autonomous cars is not generally understandable by humans in the current state of the art, and such deficiency hinders this technology from being socially acceptable. Hence, aside from making safe real-time decisions, the AI systems of autonomous vehicles also need to explain how these decisions are constructed in order to be regulatory compliant across many jurisdictions. Our study sheds a comprehensive light on developing explainable artificial intelligence (XAI) approaches for autonomous vehicles. In particular, we make the following contributions. First, we provide a thorough overview of the present gaps with respect to explanations in the state-of-the-art autonomous vehicle industry. We then show the taxonomy of explanations and explanation receivers in this field. Thirdly, we propose a framework for an architecture of end-to-end autonomous driving systems and justify the role of XAI in both debugging and regulating such systems. Finally, as future research directions, we provide a field guide on XAI approaches for autonomous driving that can improve operational safety and transparency towards achieving public approval by regulators, manufacturers, and all engaged stakeholders.