亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Weakly-supervised semantic segmentation under image tags supervision is a challenging task as it directly associates high-level semantic to low-level appearance. To bridge this gap, in this paper, we propose an iterative bottom-up and top-down framework which alternatively expands object regions and optimizes segmentation network. We start from initial localization produced by classification networks. While classification networks are only responsive to small and coarse discriminative object regions, we argue that, these regions contain significant common features about objects. So in the bottom-up step, we mine common object features from the initial localization and expand object regions with the mined features. To supplement non-discriminative regions, saliency maps are then considered under Bayesian framework to refine the object regions. Then in the top-down step, the refined object regions are used as supervision to train the segmentation network and to predict object masks. These object masks provide more accurate localization and contain more regions of object. Further, we take these object masks as initial localization and mine common object features from them. These processes are conducted iteratively to progressively produce fine object masks and optimize segmentation networks. Experimental results on Pascal VOC 2012 dataset demonstrate that the proposed method outperforms previous state-of-the-art methods by a large margin.

相關內容

In this work, we study the problem of training deep networks for semantic image segmentation using only a fraction of annotated images, which may significantly reduce human annotation efforts. Particularly, we propose a strategy that exploits the unpaired image style transfer capabilities of CycleGAN in semi-supervised segmentation. Unlike recent works using adversarial learning for semi-supervised segmentation, we enforce cycle consistency to learn a bidirectional mapping between unpaired images and segmentation masks. This adds an unsupervised regularization effect that boosts the segmentation performance when annotated data is limited. Experiments on three different public segmentation benchmarks (PASCAL VOC 2012, Cityscapes and ACDC) demonstrate the effectiveness of the proposed method. The proposed model achieves 2-4% of improvement with respect to the baseline and outperforms recent approaches for this task, particularly in low labeled data regime.

The main obstacle to weakly supervised semantic image segmentation is the difficulty of obtaining pixel-level information from coarse image-level annotations. Most methods based on image-level annotations use localization maps obtained from the classifier, but these only focus on the small discriminative parts of objects and do not capture precise boundaries. FickleNet explores diverse combinations of locations on feature maps created by generic deep neural networks. It selects hidden units randomly and then uses them to obtain activation scores for image classification. FickleNet implicitly learns the coherence of each location in the feature maps, resulting in a localization map which identifies both discriminative and other parts of objects. The ensemble effects are obtained from a single network by selecting random hidden unit pairs, which means that a variety of localization maps are generated from a single image. Our approach does not require any additional training steps and only adds a simple layer to a standard convolutional neural network; nevertheless it outperforms recent comparable techniques on the Pascal VOC 2012 benchmark in both weakly and semi-supervised settings.

This work aims to solve the challenging few-shot object detection problem where only a few annotated examples are available for each object category to train a detection model. Such an ability of learning to detect an object from just a few examples is common for human vision systems, but remains absent for computer vision systems. Though few-shot meta learning offers a promising solution technique, previous works mostly target the task of image classification and are not directly applicable for the much more complicated object detection task. In this work, we propose a novel meta-learning based model with carefully designed architecture, which consists of a meta-model and a base detection model. The base detection model is trained on several base classes with sufficient samples to offer basis features. The meta-model is trained to reweight importance of features from the base detection model over the input image and adapt these features to assist novel object detection from a few examples. The meta-model is light-weight, end-to-end trainable and able to entail the base model with detection ability for novel objects fast. Through experiments we demonstrated our model can outperform baselines by a large margin for few-shot object detection, on multiple datasets and settings. Our model also exhibits fast adaptation speed to novel few-shot classes.

Medical image segmentation requires consensus ground truth segmentations to be derived from multiple expert annotations. A novel approach is proposed that obtains consensus segmentations from experts using graph cuts (GC) and semi supervised learning (SSL). Popular approaches use iterative Expectation Maximization (EM) to estimate the final annotation and quantify annotator's performance. Such techniques pose the risk of getting trapped in local minima. We propose a self consistency (SC) score to quantify annotator consistency using low level image features. SSL is used to predict missing annotations by considering global features and local image consistency. The SC score also serves as the penalty cost in a second order Markov random field (MRF) cost function optimized using graph cuts to derive the final consensus label. Graph cut obtains a global maximum without an iterative procedure. Experimental results on synthetic images, real data of Crohn's disease patients and retinal images show our final segmentation to be accurate and more consistent than competing methods.

In multi-organ segmentation of abdominal CT scans, most existing fully supervised deep learning algorithms require lots of voxel-wise annotations, which are usually difficult, expensive, and slow to obtain. In comparison, massive unlabeled 3D CT volumes are usually easily accessible. Current mainstream works to address the semi-supervised biomedical image segmentation problem are mostly graph-based. By contrast, deep network based semi-supervised learning methods have not drawn much attention in this field. In this work, we propose Deep Multi-Planar Co-Training (DMPCT), whose contributions can be divided into two folds: 1) The deep model is learned in a co-training style which can mine consensus information from multiple planes like the sagittal, coronal, and axial planes; 2) Multi-planar fusion is applied to generate more reliable pseudo-labels, which alleviates the errors occurring in the pseudo-labels and thus can help to train better segmentation networks. Experiments are done on our newly collected large dataset with 100 unlabeled cases as well as 210 labeled cases where 16 anatomical structures are manually annotated by four radiologists and confirmed by a senior expert. The results suggest that DMPCT significantly outperforms the fully supervised method by more than 4% especially when only a small set of annotations is used.

Weakly supervised instance segmentation with image-level labels, instead of expensive pixel-level masks, remains unexplored. In this paper, we tackle this challenging problem by exploiting class peak responses to enable a classification network for instance mask extraction. With image labels supervision only, CNN classifiers in a fully convolutional manner can produce class response maps, which specify classification confidence at each image location. We observed that local maximums, i.e., peaks, in a class response map typically correspond to strong visual cues residing inside each instance. Motivated by this, we first design a process to stimulate peaks to emerge from a class response map. The emerged peaks are then back-propagated and effectively mapped to highly informative regions of each object instance, such as instance boundaries. We refer to the above maps generated from class peak responses as Peak Response Maps (PRMs). PRMs provide a fine-detailed instance-level representation, which allows instance masks to be extracted even with some off-the-shelf methods. To the best of our knowledge, we for the first time report results for the challenging image-level supervised instance segmentation task. Extensive experiments show that our method also boosts weakly supervised pointwise localization as well as semantic segmentation performance, and reports state-of-the-art results on popular benchmarks, including PASCAL VOC 2012 and MS COCO.

Deep CNN-based object detection systems have achieved remarkable success on several large-scale object detection benchmarks. However, training such detectors requires a large number of labeled bounding boxes, which are more difficult to obtain than image-level annotations. Previous work addresses this issue by transforming image-level classifiers into object detectors. This is done by modeling the differences between the two on categories with both image-level and bounding box annotations, and transferring this information to convert classifiers to detectors for categories without bounding box annotations. We improve this previous work by incorporating knowledge about object similarities from visual and semantic domains during the transfer process. The intuition behind our proposed method is that visually and semantically similar categories should exhibit more common transferable properties than dissimilar categories, e.g. a better detector would result by transforming the differences between a dog classifier and a dog detector onto the cat class, than would by transforming from the violin class. Experimental results on the challenging ILSVRC2013 detection dataset demonstrate that each of our proposed object similarity based knowledge transfer methods outperforms the baseline methods. We found strong evidence that visual similarity and semantic relatedness are complementary for the task, and when combined notably improve detection, achieving state-of-the-art detection performance in a semi-supervised setting.

Salient object detection, which aims to identify and locate the most salient pixels or regions in images, has been attracting more and more interest due to its various real-world applications. However, this vision task is quite challenging, especially under complex image scenes. Inspired by the intrinsic reflection of natural images, in this paper we propose a novel feature learning framework for large-scale salient object detection. Specifically, we design a symmetrical fully convolutional network (SFCN) to learn complementary saliency features under the guidance of lossless feature reflection. The location information, together with contextual and semantic information, of salient objects are jointly utilized to supervise the proposed network for more accurate saliency predictions. In addition, to overcome the blurry boundary problem, we propose a new structural loss function to learn clear object boundaries and spatially consistent saliency. The coarse prediction results are effectively refined by these structural information for performance improvements. Extensive experiments on seven saliency detection datasets demonstrate that our approach achieves consistently superior performance and outperforms the very recent state-of-the-art methods.

Weakly supervised object detection has recently received much attention, since it only requires image-level labels instead of the bounding-box labels consumed in strongly supervised learning. Nevertheless, the save in labeling expense is usually at the cost of model accuracy. In this paper, we propose a simple but effective weakly supervised collaborative learning framework to resolve this problem, which trains a weakly supervised learner and a strongly supervised learner jointly by enforcing partial feature sharing and prediction consistency. For object detection, taking WSDDN-like architecture as weakly supervised detector sub-network and Faster-RCNN-like architecture as strongly supervised detector sub-network, we propose an end-to-end Weakly Supervised Collaborative Detection Network. As there is no strong supervision available to train the Faster-RCNN-like sub-network, a new prediction consistency loss is defined to enforce consistency of predictions between the two sub-networks as well as within the Faster-RCNN-like sub-networks. At the same time, the two detectors are designed to partially share features to further guarantee the model consistency at perceptual level. Extensive experiments on PASCAL VOC 2007 and 2012 data sets have demonstrated the effectiveness of the proposed framework.

Deep convolutional networks for semantic image segmentation typically require large-scale labeled data, e.g. ImageNet and MS COCO, for network pre-training. To reduce annotation efforts, self-supervised semantic segmentation is recently proposed to pre-train a network without any human-provided labels. The key of this new form of learning is to design a proxy task (e.g. image colorization), from which a discriminative loss can be formulated on unlabeled data. Many proxy tasks, however, lack the critical supervision signals that could induce discriminative representation for the target image segmentation task. Thus self-supervision's performance is still far from that of supervised pre-training. In this study, we overcome this limitation by incorporating a "mix-and-match" (M&M) tuning stage in the self-supervision pipeline. The proposed approach is readily pluggable to many self-supervision methods and does not use more annotated samples than the original process. Yet, it is capable of boosting the performance of target image segmentation task to surpass fully-supervised pre-trained counterpart. The improvement is made possible by better harnessing the limited pixel-wise annotations in the target dataset. Specifically, we first introduce the "mix" stage, which sparsely samples and mixes patches from the target set to reflect rich and diverse local patch statistics of target images. A "match" stage then forms a class-wise connected graph, which can be used to derive a strong triplet-based discriminative loss for fine-tuning the network. Our paradigm follows the standard practice in existing self-supervised studies and no extra data or label is required. With the proposed M&M approach, for the first time, a self-supervision method can achieve comparable or even better performance compared to its ImageNet pre-trained counterpart on both PASCAL VOC2012 dataset and CityScapes dataset.

北京阿比特科技有限公司