亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study online learning in repeated first-price auctions with censored feedback, where a bidder, only observing the winning bid at the end of each auction, learns to adaptively bid in order to maximize her cumulative payoff. To achieve this goal, the bidder faces a challenging dilemma: if she wins the bid--the only way to achieve positive payoffs--then she is not able to observe the highest bid of the other bidders, which we assume is iid drawn from an unknown distribution. This dilemma, despite being reminiscent of the exploration-exploitation trade-off in contextual bandits, cannot directly be addressed by the existing UCB or Thompson sampling algorithms. In this paper, by exploiting the structural properties of first-price auctions, we develop the first learning algorithm that achieves $O(\sqrt{T}\log^{2.5} T)$ regret bound, which is minimax optimal up to $\log$ factors, when the bidder's private values are stochastically generated. We do so by providing an algorithm on a general class of problems, called the partially ordered contextual bandits, which combine the graph feedback across actions, the cross learning across contexts, and a partial order over the contexts. We establish both strengths and weaknesses of this framework, by showing a curious separation that a regret nearly independent of the action/context sizes is possible under stochastic contexts, but is impossible under adversarial contexts. Despite the limitation of this general framework, we further exploit the structure of first-price auctions and develop a learning algorithm that operates sample-efficiently (and computationally efficiently) in the presence of adversarially generated private values. We establish an $O(\sqrt{T}\log^3 T)$ regret bound for this algorithm, hence providing a complete characterization of optimal learning guarantees for first-price auctions.

相關內容

A multi-label classifier estimates the binary label state (relevant vs irrelevant) for each of a set of concept labels, for any given instance. Probabilistic multi-label classifiers provide a predictive posterior distribution over all possible labelset combinations of such label states (the powerset of labels) from which we can provide the best estimate, simply by selecting the labelset corresponding to the largest expected accuracy, over that distribution. For example, in maximizing exact match accuracy, we provide the mode of the distribution. But how does this relate to the confidence we may have in such an estimate? Confidence is an important element of real-world applications of multi-label classifiers (as in machine learning in general) and is an important ingredient in explainability and interpretability. However, it is not obvious how to provide confidence in the multi-label context and relating to a particular accuracy metric, and nor is it clear how to provide a confidence which correlates well with the expected accuracy, which would be most valuable in real-world decision making. In this article we estimate the expected accuracy as a surrogate for confidence, for a given accuracy metric. We hypothesise that the expected accuracy can be estimated from the multi-label predictive distribution. We examine seven candidate functions for their ability to estimate expected accuracy from the predictive distribution. We found three of these to correlate to expected accuracy and are robust. Further, we determined that each candidate function can be used separately to estimate Hamming similarity, but a combination of the candidates was best for expected Jaccard index and exact match.

We study the aggregate welfare and individual regret guarantees of dynamic \emph{pacing algorithms} in the context of repeated auctions with budgets. Such algorithms are commonly used as bidding agents in Internet advertising platforms. We show that when agents simultaneously apply a natural form of gradient-based pacing, the liquid welfare obtained over the course of the learning dynamics is at least half the optimal expected liquid welfare obtainable by any allocation rule. Crucially, this result holds \emph{without requiring convergence of the dynamics}, allowing us to circumvent known complexity-theoretic obstacles of finding equilibria. This result is also robust to the correlation structure between agent valuations and holds for any \emph{core auction}, a broad class of auctions that includes first-price, second-price, and generalized second-price auctions. For individual guarantees, we further show such pacing algorithms enjoy \emph{dynamic regret} bounds for individual value maximization, with respect to the sequence of budget-pacing bids, for any auction satisfying a monotone bang-for-buck property.

We consider training models on private data that are distributed across user devices. To ensure privacy, we add on-device noise and use secure aggregation so that only the noisy sum is revealed to the server. We present a comprehensive end-to-end system, which appropriately discretizes the data and adds discrete Gaussian noise before performing secure aggregation. We provide a novel privacy analysis for sums of discrete Gaussians and carefully analyze the effects of data quantization and modular summation arithmetic. Our theoretical guarantees highlight the complex tension between communication, privacy, and accuracy. Our extensive experimental results demonstrate that our solution is essentially able to match the accuracy to central differential privacy with less than 16 bits of precision per value.

We propose SwiftAgg+, a novel secure aggregation protocol for federated learning systems, where a central server aggregates local models of $N \in \mathbb{N}$ distributed users, each of size $L \in \mathbb{N}$, trained on their local data, in a privacy-preserving manner. SwiftAgg+ can significantly reduce the communication overheads without any compromise on security, and achieve optimal communication loads within diminishing gaps. Specifically, in presence of at most $D=o(N)$ dropout users, SwiftAgg+ achieves a per-user communication load of $(1+\mathcal{O}(\frac{1}{N}))L$ symbols and a server communication load of $(1+\mathcal{O}(\frac{1}{N}))L$ symbols, with a worst-case information-theoretic security guarantee, against any subset of up to $T=o(N)$ semi-honest users who may also collude with the curious server. Moreover, the proposed SwiftAgg+ allows for a flexible trade-off between communication loads and the number of active communication links. In particular, for $T<N-D$ and for any $K\in\mathbb{N}$, SwiftAgg+ can achieve the server communication load of $(1+\frac{T}{K})L$ symbols, and per-user communication load of up to $(1+\frac{T+D}{K})L$ symbols, where the number of pair-wise active connections in the network is $\frac{N}{2}(K+T+D+1)$.

Federated learning allows multiple participants to collaboratively train an efficient model without exposing data privacy. However, this distributed machine learning training method is prone to attacks from Byzantine clients, which interfere with the training of the global model by modifying the model or uploading the false gradient. In this paper, we propose a novel serverless federated learning framework Committee Mechanism based Federated Learning (CMFL), which can ensure the robustness of the algorithm with convergence guarantee. In CMFL, a committee system is set up to screen the uploaded local gradients. The committee system selects the local gradients rated by the elected members for the aggregation procedure through the selection strategy, and replaces the committee member through the election strategy. Based on the different considerations of model performance and defense, two opposite selection strategies are designed for the sake of both accuracy and robustness. Extensive experiments illustrate that CMFL achieves faster convergence and better accuracy than the typical Federated Learning, in the meanwhile obtaining better robustness than the traditional Byzantine-tolerant algorithms, in the manner of a decentralized approach. In addition, we theoretically analyze and prove the convergence of CMFL under different election and selection strategies, which coincides with the experimental results.

In the context of aircraft system performance assessment, deep learning technologies allow to quickly infer models from experimental measurements, with less detailed system knowledge than usually required by physics-based modeling. However, this inexpensive model development also comes with new challenges regarding model trustworthiness. This work presents a novel approach, physics-guided adversarial machine learning (ML), that improves the confidence over the physics consistency of the model. The approach performs, first, a physics-guided adversarial testing phase to search for test inputs revealing behavioral system inconsistencies, while still falling within the range of foreseeable operational conditions. Then, it proceeds with physics-informed adversarial training to teach the model the system-related physics domain foreknowledge through iteratively reducing the unwanted output deviations on the previously-uncovered counterexamples. Empirical evaluation on two aircraft system performance models shows the effectiveness of our adversarial ML approach in exposing physical inconsistencies of both models and in improving their propensity to be consistent with physics domain knowledge.

Threshold aggregation reporting systems promise a practical, privacy-preserving solution for developers to learn how their applications are used "\emph{in-the-wild}". Unfortunately, proposed systems to date prove impractical for wide scale adoption, suffering from a combination of requiring: \emph{i)} prohibitive trust assumptions; \emph{ii)} high computation costs; or \emph{iii)} massive user bases. As a result, adoption of truly-private approaches has been limited to only a small number of enormous (and enormously costly) projects. In this work, we improve the state of private data collection by proposing $\mathsf{STAR}$, a highly efficient, easily deployable system for providing cryptographically-enforced $\kappa$-anonymity protections on user data collection. The $\mathsf{STAR}$ protocol is easy to implement and cheap to run, all while providing privacy properties similar to, or exceeding the current state-of-the-art. Measurements of our open-source implementation of $\mathsf{STAR}$ find that it is $1773\times$ quicker, requires $62.4\times$ less communication, and is $24\times$ cheaper to run than the existing state-of-the-art.

Federated learning (FL) is a novel learning paradigm that addresses the privacy leakage challenge of centralized learning. However, in FL, users with non-independent and identically distributed (non-IID) characteristics can deteriorate the performance of the global model. Specifically, the global model suffers from the weight divergence challenge owing to non-IID data. To address the aforementioned challenge, we propose a novel diffusion strategy of the machine learning (ML) model (FedDif) to maximize the FL performance with non-IID data. In FedDif, users spread local models to neighboring users over D2D communications. FedDif enables the local model to experience different distributions before parameter aggregation. Furthermore, we theoretically demonstrate that FedDif can circumvent the weight divergence challenge. On the theoretical basis, we propose the communication-efficient diffusion strategy of the ML model, which can determine the trade-off between the learning performance and communication cost based on auction theory. The performance evaluation results show that FedDif improves the test accuracy of the global model by 10.37% compared to the baseline FL with non-IID settings. Moreover, FedDif improves the number of consumed sub-frames by 1.28 to 2.85 folds to the latest methods except for the model compression scheme. FedDif also improves the number of transmitted models by 1.43 to 2.67 folds to the latest methods.

Bid optimization for online advertising from single advertiser's perspective has been thoroughly investigated in both academic research and industrial practice. However, existing work typically assume competitors do not change their bids, i.e., the wining price is fixed, leading to poor performance of the derived solution. Although a few studies use multi-agent reinforcement learning to set up a cooperative game, they still suffer the following drawbacks: (1) They fail to avoid collusion solutions where all the advertisers involved in an auction collude to bid an extremely low price on purpose. (2) Previous works cannot well handle the underlying complex bidding environment, leading to poor model convergence. This problem could be amplified when handling multiple objectives of advertisers which are practical demands but not considered by previous work. In this paper, we propose a novel multi-objective cooperative bid optimization formulation called Multi-Agent Cooperative bidding Games (MACG). MACG sets up a carefully designed multi-objective optimization framework where different objectives of advertisers are incorporated. A global objective to maximize the overall profit of all advertisements is added in order to encourage better cooperation and also to protect self-bidding advertisers. To avoid collusion, we also introduce an extra platform revenue constraint. We analyze the optimal functional form of the bidding formula theoretically and design a policy network accordingly to generate auction-level bids. Then we design an efficient multi-agent evolutionary strategy for model optimization. Offline experiments and online A/B tests conducted on the Taobao platform indicate both single advertiser's objective and global profit have been significantly improved compared to state-of-art methods.

In this monograph, I introduce the basic concepts of Online Learning through a modern view of Online Convex Optimization. Here, online learning refers to the framework of regret minimization under worst-case assumptions. I present first-order and second-order algorithms for online learning with convex losses, in Euclidean and non-Euclidean settings. All the algorithms are clearly presented as instantiation of Online Mirror Descent or Follow-The-Regularized-Leader and their variants. Particular attention is given to the issue of tuning the parameters of the algorithms and learning in unbounded domains, through adaptive and parameter-free online learning algorithms. Non-convex losses are dealt through convex surrogate losses and through randomization. The bandit setting is also briefly discussed, touching on the problem of adversarial and stochastic multi-armed bandits. These notes do not require prior knowledge of convex analysis and all the required mathematical tools are rigorously explained. Moreover, all the proofs have been carefully chosen to be as simple and as short as possible.

北京阿比特科技有限公司