We propose SwiftAgg+, a novel secure aggregation protocol for federated learning systems, where a central server aggregates local models of $N \in \mathbb{N}$ distributed users, each of size $L \in \mathbb{N}$, trained on their local data, in a privacy-preserving manner. SwiftAgg+ can significantly reduce the communication overheads without any compromise on security, and achieve optimal communication loads within diminishing gaps. Specifically, in presence of at most $D=o(N)$ dropout users, SwiftAgg+ achieves a per-user communication load of $(1+\mathcal{O}(\frac{1}{N}))L$ symbols and a server communication load of $(1+\mathcal{O}(\frac{1}{N}))L$ symbols, with a worst-case information-theoretic security guarantee, against any subset of up to $T=o(N)$ semi-honest users who may also collude with the curious server. Moreover, the proposed SwiftAgg+ allows for a flexible trade-off between communication loads and the number of active communication links. In particular, for $T<N-D$ and for any $K\in\mathbb{N}$, SwiftAgg+ can achieve the server communication load of $(1+\frac{T}{K})L$ symbols, and per-user communication load of up to $(1+\frac{T+D}{K})L$ symbols, where the number of pair-wise active connections in the network is $\frac{N}{2}(K+T+D+1)$.
Successful coordination in Dec-POMDPs requires agents to adopt robust strategies and interpretable styles of play for their partner. A common failure mode is symmetry breaking, when agents arbitrarily converge on one out of many equivalent but mutually incompatible policies. Commonly these examples include partial observability, e.g. waving your right hand vs. left hand to convey a covert message. In this paper, we present a novel equivariant network architecture for use in Dec-POMDPs that prevents the agent from learning policies which break symmetries, doing so more effectively than prior methods. Our method also acts as a "coordination-improvement operator" for generic, pre-trained policies, and thus may be applied at test-time in conjunction with any self-play algorithm. We provide theoretical guarantees of our work and test on the AI benchmark task of Hanabi, where we demonstrate our methods outperforming other symmetry-aware baselines in zero-shot coordination, as well as able to improve the coordination ability of a variety of pre-trained policies. In particular, we show our method can be used to improve on the state of the art for zero-shot coordination on the Hanabi benchmark.
In this paper, we propose new geometrically unfitted space-time Finite Element methods for partial differential equations posed on moving domains of higher order accuracy in space and time. As a model problem, the convection-diffusion problem on a moving domain is studied. For geometrically higher order accuracy, we apply a parametric mapping on a background space-time tensor-product mesh. Concerning discretisation in time, we consider discontinuous Galerkin, as well as related continuous (Petrov-)Galerkin and Galerkin collocation methods. For stabilisation with respect to bad cut configurations and as an extension mechanism that is required for the latter two schemes, a ghost penalty stabilisation is employed. The article puts an emphasis on the techniques that allow to achieve a robust but higher order geometry handling for smooth domains. We investigate the computational properties of the respective methods in a series of numerical experiments. These include studies in different dimensions for different polynomial degrees in space and time, validating the higher order accuracy in both variables.
Many view deep learning as a "black box" used only for forecasting. However, this paper provides an alternative application by constructing a structural deep neural network to generate latent factors in asset pricing. The conventional approach of sorting firm characteristics to generate long-short factor portfolio weights is underappreciated nonlinear modeling. First, we describe the complete mechanism for fitting crosssectional returns by firm characteristics through risk factors. Second, unlike statistical models, our model has an economic-guided objective function that minimizes pricing errors. Empirically, we find asset pricing and investment improvements using individual stocks and test portfolios for in-sample and out-of-sample analysis.
The simulation of human neurons and neurotransmission mechanisms has been realized in deep neural networks based on the theoretical implementations of activation functions. However, recent studies have reported that the threshold potential of neurons exhibits different values according to the locations and types of individual neurons, and that the activation functions have limitations in terms of representing this variability. Therefore, this study proposes a simple yet effective activation function that facilitates different thresholds and adaptive activations according to the positions of units and the contexts of inputs. Furthermore, the proposed activation function mathematically exhibits a more generalized form of Swish activation function, and thus we denoted it as Adaptive SwisH (ASH). ASH highlights informative features that exhibit large values in the top percentiles in an input, whereas it rectifies low values. Most importantly, ASH exhibits trainable, adaptive, and context-aware properties compared to other activation functions. Furthermore, ASH represents general formula of the previously studied activation function and provides a reasonable mathematical background for the superior performance. To validate the effectiveness and robustness of ASH, we implemented ASH into many deep learning models for various tasks, including classification, detection, segmentation, and image generation. Experimental analysis demonstrates that our activation function can provide the benefits of more accurate prediction and earlier convergence in many deep learning applications.
A simple generative model based on a continuous-time normalizing flow between any pair of base and target probability densities is proposed. The velocity field of this flow is inferred from the probability current of a time-dependent density that interpolates between the base and the target in finite time. Unlike conventional normalizing flow inference methods based the maximum likelihood principle, which require costly backpropagation through ODE solvers, our interpolant approach leads to a simple quadratic loss for the velocity itself which is expressed in terms of expectations that are readily amenable to empirical estimation. The flow can be used to generate samples from either the base or target, and to estimate the likelihood at any time along the interpolant. In addition, the flow can be optimized to minimize the path length of the interpolant density, thereby paving the way for building optimal transport maps. The approach is also contextualized in its relation to diffusions. In particular, in situations where the base is a Gaussian density, we show that the velocity of our normalizing flow can also be used to construct a diffusion model to sample the target as well as estimating its score. This allows one to map methods based on stochastic differential equations to those using ordinary differential equations, simplifying the mechanics of the model, but capturing equivalent dynamics. Benchmarking on density estimation tasks illustrates that the learned flow can match and surpass maximum likelihood continuous flows at a fraction of the conventional ODE training costs.
Federated learning (FL) allows participants to collaboratively train machine and deep learning models while protecting data privacy. However, the FL paradigm still presents drawbacks affecting its trustworthiness since malicious participants could launch adversarial attacks against the training process. Related work has studied the robustness of horizontal FL scenarios under different attacks. However, there is a lack of work evaluating the robustness of decentralized vertical FL and comparing it with horizontal FL architectures affected by adversarial attacks. Thus, this work proposes three decentralized FL architectures, one for horizontal and two for vertical scenarios, namely HoriChain, VertiChain, and VertiComb. These architectures present different neural networks and training protocols suitable for horizontal and vertical scenarios. Then, a decentralized, privacy-preserving, and federated use case with non-IID data to classify handwritten digits is deployed to evaluate the performance of the three architectures. Finally, a set of experiments computes and compares the robustness of the proposed architectures when they are affected by different data poisoning based on image watermarks and gradient poisoning adversarial attacks. The experiments show that even though particular configurations of both attacks can destroy the classification performance of the architectures, HoriChain is the most robust one.
In this paper, we investigate a novel problem of building contextual bandits in the vertical federated setting, i.e., contextual information is vertically distributed over different departments. This problem remains largely unexplored in the research community. To this end, we carefully design a customized encryption scheme named orthogonal matrix-based mask mechanism(O3M) for encrypting local contextual information while avoiding expensive conventional cryptographic techniques. We further apply the mechanism to two commonly-used bandit algorithms, LinUCB and LinTS, and instantiate two practical protocols for online recommendation under the vertical federated setting. The proposed protocols can perfectly recover the service quality of centralized bandit algorithms while achieving a satisfactory runtime efficiency, which is theoretically proved and analyzed in this paper. By conducting extensive experiments on both synthetic and real-world datasets, we show the superiority of the proposed method in terms of privacy protection and recommendation performance.
Federated learning (FL) is a collaborative machine learning framework that requires different clients (e.g., Internet of Things devices) to participate in the machine learning model training process by training and uploading their local models to an FL server in each global iteration. Upon receiving the local models from all the clients, the FL server generates a global model by aggregating the received local models. This traditional FL process may suffer from the straggler problem in heterogeneous client settings, where the FL server has to wait for slow clients to upload their local models in each global iteration, thus increasing the overall training time. One of the solutions is to set up a deadline and only the clients that can upload their local models before the deadline would be selected in the FL process. This solution may lead to a slow convergence rate and global model overfitting issues due to the limited client selection. In this paper, we propose the Latency awarE Semi-synchronous client Selection and mOdel aggregation for federated learNing (LESSON) method that allows all the clients to participate in the whole FL process but with different frequencies. That is, faster clients would be scheduled to upload their models more frequently than slow clients, thus resolving the straggler problem and accelerating the convergence speed, while avoiding model overfitting. Also, LESSON is capable of adjusting the tradeoff between the model accuracy and convergence rate by varying the deadline. Extensive simulations have been conducted to compare the performance of LESSON with the other two baseline methods, i.e., FedAvg and FedCS. The simulation results demonstrate that LESSON achieves faster convergence speed than FedAvg and FedCS, and higher model accuracy than FedCS.
Effective multi-robot teams require the ability to move to goals in complex environments in order to address real-world applications such as search and rescue. Multi-robot teams should be able to operate in a completely decentralized manner, with individual robot team members being capable of acting without explicit communication between neighbors. In this paper, we propose a novel game theoretic model that enables decentralized and communication-free navigation to a goal position. Robots each play their own distributed game by estimating the behavior of their local teammates in order to identify behaviors that move them in the direction of the goal, while also avoiding obstacles and maintaining team cohesion without collisions. We prove theoretically that generated actions approach a Nash equilibrium, which also corresponds to an optimal strategy identified for each robot. We show through extensive simulations that our approach enables decentralized and communication-free navigation by a multi-robot system to a goal position, and is able to avoid obstacles and collisions, maintain connectivity, and respond robustly to sensor noise.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.