Energy-Based Models (EBMs) allow for extremely flexible specifications of probability distributions. However, they do not provide a mechanism for obtaining exact samples from these distributions. Monte Carlo techniques can aid us in obtaining samples if some proposal distribution that we can easily sample from is available. For instance, rejection sampling can provide exact samples but is often difficult or impossible to apply due to the need to find a proposal distribution that upper-bounds the target distribution everywhere. Approximate Markov chain Monte Carlo sampling techniques like Metropolis-Hastings are usually easier to design, exploiting a local proposal distribution that performs local edits on an evolving sample. However, these techniques can be inefficient due to the local nature of the proposal distribution and do not provide an estimate of the quality of their samples. In this work, we propose a new approximate sampling technique, Quasi Rejection Sampling (QRS), that allows for a trade-off between sampling efficiency and sampling quality, while providing explicit convergence bounds and diagnostics. QRS capitalizes on the availability of high-quality global proposal distributions obtained from deep learning models. We demonstrate the effectiveness of QRS sampling for discrete EBMs over text for the tasks of controlled text generation with distributional constraints and paraphrase generation. We show that we can sample from such EBMs with arbitrary precision at the cost of sampling efficiency.
In many real-world situations, data is distributed across multiple locations and can't be combined for training. Federated learning is a novel distributed learning approach that allows multiple federating agents to jointly learn a model. While this approach might reduce the error each agent experiences, it also raises questions of fairness: to what extent can the error experienced by one agent be significantly lower than the error experienced by another agent? In this work, we consider two notions of fairness that each may be appropriate in different circumstances: egalitarian fairness (which aims to bound how dissimilar error rates can be) and proportional fairness (which aims to reward players for contributing more data). For egalitarian fairness, we obtain a tight multiplicative bound on how widely error rates can diverge between agents federating together. For proportional fairness, we show that sub-proportional error (relative to the number of data points contributed) is guaranteed for any individually rational federating coalition.
We prove a Central Limit Theorem for the empirical optimal transport cost, $\sqrt{\frac{nm}{n+m}}\{\mathcal{T}_c(P_n,Q_m)-\mathcal{T}_c(P,Q)\}$, in the semi discrete case, i.e when the distribution $P$ is supported in $N$ points, but without assumptions on $Q$. We show that the asymptotic distribution is the supremun of a centered Gaussian process, which is Gaussian under some additional conditions on the probability $Q$ and on the cost. Such results imply the central limit theorem for the $p$-Wassertein distance, for $p\geq 1$. This means that, for fixed $N$, the curse of dimensionality is avoided. To better understand the influence of such $N$, we provide bounds of $E|\mathcal{W}_1(P,Q_m)-\mathcal{W}_1(P,Q)|$ depending on $m$ and $N$. Finally, the semidiscrete framework provides a control on the second derivative of the dual formulation, which yields the first central limit theorem for the optimal transport potentials. The results are supported by simulations that help to visualize the given limits and bounds. We analyse also the cases where classical bootstrap works.
Tomographic imaging is in general an ill-posed inverse problem. Typically, a single regularized image estimate of the sought-after object is obtained from tomographic measurements. However, there may be multiple objects that are all consistent with the same measurement data. The ability to generate such alternate solutions is important because it may enable new assessments of imaging systems. In principle, this can be achieved by means of posterior sampling methods. In recent years, deep neural networks have been employed for posterior sampling with promising results. However, such methods are not yet for use with large-scale tomographic imaging applications. On the other hand, empirical sampling methods may be computationally feasible for large-scale imaging systems and enable uncertainty quantification for practical applications. Empirical sampling involves solving a regularized inverse problem within a stochastic optimization framework in order to obtain alternate data-consistent solutions. In this work, we propose a new empirical sampling method that computes multiple solutions of a tomographic inverse problem that are consistent with the same acquired measurement data. The method operates by repeatedly solving an optimization problem in the latent space of a style-based generative adversarial network (StyleGAN), and was inspired by the Photo Upsampling via Latent Space Exploration (PULSE) method that was developed for super-resolution tasks. The proposed method is demonstrated and analyzed via numerical studies that involve two stylized tomographic imaging modalities. These studies establish the ability of the method to perform efficient empirical sampling and uncertainty quantification.
Contrastive learning is a method of learning visual representations by training Deep Neural Networks (DNNs) to increase the similarity between representations of positive pairs and reduce the similarity between representations of negative pairs. However, contrastive methods usually require large datasets with significant number of negative pairs per iteration to achieve reasonable performance on downstream tasks. To address this problem, here we propose Energy-Based Contrastive Learning (EBCLR) that combines contrastive learning with Energy-Based Models (EBMs) and can be theoretically interpreted as learning the joint distribution of positive pairs. Using a novel variant of Stochastic Gradient Langevin Dynamics (SGLD) to accelerate the training of EBCLR, we show that EBCLR is far more sample-efficient than previous self-supervised learning methods. Specifically, EBCLR shows from X4 up to X20 acceleration compared to SimCLR and MoCo v2 in terms of training epochs. Furthermore, in contrast to SimCLR, EBCLR achieves nearly the same performance with 254 negative pairs (batch size 128) and 30 negative pairs (batch size 16) per positive pair, demonstrating the robustness of EBCLR to small number of negative pairs.
Controllable generation is one of the key requirements for successful adoption of deep generative models in real-world applications, but it still remains as a great challenge. In particular, the compositional ability to generate novel concept combinations is out of reach for most current models. In this work, we use energy-based models (EBMs) to handle compositional generation over a set of attributes. To make them scalable to high-resolution image generation, we introduce an EBM in the latent space of a pre-trained generative model such as StyleGAN. We propose a novel EBM formulation representing the joint distribution of data and attributes together, and we show how sampling from it is formulated as solving an ordinary differential equation (ODE). Given a pre-trained generator, all we need for controllable generation is to train an attribute classifier. Sampling with ODEs is done efficiently in the latent space and is robust to hyperparameters. Thus, our method is simple, fast to train, and efficient to sample. Experimental results show that our method outperforms the state-of-the-art in both conditional sampling and sequential editing. In compositional generation, our method excels at zero-shot generation of unseen attribute combinations. Also, by composing energy functions with logical operators, this work is the first to achieve such compositionality in generating photo-realistic images of resolution 1024x1024.
Active inference is a unifying theory for perception and action resting upon the idea that the brain maintains an internal model of the world by minimizing free energy. From a behavioral perspective, active inference agents can be seen as self-evidencing beings that act to fulfill their optimistic predictions, namely preferred outcomes or goals. In contrast, reinforcement learning requires human-designed rewards to accomplish any desired outcome. Although active inference could provide a more natural self-supervised objective for control, its applicability has been limited because of the shortcomings in scaling the approach to complex environments. In this work, we propose a contrastive objective for active inference that strongly reduces the computational burden in learning the agent's generative model and planning future actions. Our method performs notably better than likelihood-based active inference in image-based tasks, while also being computationally cheaper and easier to train. We compare to reinforcement learning agents that have access to human-designed reward functions, showing that our approach closely matches their performance. Finally, we also show that contrastive methods perform significantly better in the case of distractors in the environment and that our method is able to generalize goals to variations in the background.
We propose a general and scalable approximate sampling strategy for probabilistic models with discrete variables. Our approach uses gradients of the likelihood function with respect to its discrete inputs to propose updates in a Metropolis-Hastings sampler. We show empirically that this approach outperforms generic samplers in a number of difficult settings including Ising models, Potts models, restricted Boltzmann machines, and factorial hidden Markov models. We also demonstrate the use of our improved sampler for training deep energy-based models on high dimensional discrete data. This approach outperforms variational auto-encoders and existing energy-based models. Finally, we give bounds showing that our approach is near-optimal in the class of samplers which propose local updates.
Recent work has proposed stochastic Plackett-Luce (PL) ranking models as a robust choice for optimizing relevance and fairness metrics. Unlike their deterministic counterparts that require heuristic optimization algorithms, PL models are fully differentiable. Theoretically, they can be used to optimize ranking metrics via stochastic gradient descent. However, in practice, the computation of the gradient is infeasible because it requires one to iterate over all possible permutations of items. Consequently, actual applications rely on approximating the gradient via sampling techniques. In this paper, we introduce a novel algorithm: PL-Rank, that estimates the gradient of a PL ranking model w.r.t. both relevance and fairness metrics. Unlike existing approaches that are based on policy gradients, PL-Rank makes use of the specific structure of PL models and ranking metrics. Our experimental analysis shows that PL-Rank has a greater sample-efficiency and is computationally less costly than existing policy gradients, resulting in faster convergence at higher performance. PL-Rank further enables the industry to apply PL models for more relevant and fairer real-world ranking systems.
Minimizing cross-entropy over the softmax scores of a linear map composed with a high-capacity encoder is arguably the most popular choice for training neural networks on supervised learning tasks. However, recent works show that one can directly optimize the encoder instead, to obtain equally (or even more) discriminative representations via a supervised variant of a contrastive objective. In this work, we address the question whether there are fundamental differences in the sought-for representation geometry in the output space of the encoder at minimal loss. Specifically, we prove, under mild assumptions, that both losses attain their minimum once the representations of each class collapse to the vertices of a regular simplex, inscribed in a hypersphere. We provide empirical evidence that this configuration is attained in practice and that reaching a close-to-optimal state typically indicates good generalization performance. Yet, the two losses show remarkably different optimization behavior. The number of iterations required to perfectly fit to data scales superlinearly with the amount of randomly flipped labels for the supervised contrastive loss. This is in contrast to the approximately linear scaling previously reported for networks trained with cross-entropy.
Alternating Direction Method of Multipliers (ADMM) is a widely used tool for machine learning in distributed settings, where a machine learning model is trained over distributed data sources through an interactive process of local computation and message passing. Such an iterative process could cause privacy concerns of data owners. The goal of this paper is to provide differential privacy for ADMM-based distributed machine learning. Prior approaches on differentially private ADMM exhibit low utility under high privacy guarantee and often assume the objective functions of the learning problems to be smooth and strongly convex. To address these concerns, we propose a novel differentially private ADMM-based distributed learning algorithm called DP-ADMM, which combines an approximate augmented Lagrangian function with time-varying Gaussian noise addition in the iterative process to achieve higher utility for general objective functions under the same differential privacy guarantee. We also apply the moments accountant method to bound the end-to-end privacy loss. The theoretical analysis shows that DP-ADMM can be applied to a wider class of distributed learning problems, is provably convergent, and offers an explicit utility-privacy tradeoff. To our knowledge, this is the first paper to provide explicit convergence and utility properties for differentially private ADMM-based distributed learning algorithms. The evaluation results demonstrate that our approach can achieve good convergence and model accuracy under high end-to-end differential privacy guarantee.